Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfauscl | Unicode version |
Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4082, we invoke the Axiom of Extensionality (indirectly via vtocl 2766), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
zfauscl.1 |
Ref | Expression |
---|---|
zfauscl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfauscl.1 | . 2 | |
2 | eleq2 2221 | . . . . . 6 | |
3 | 2 | anbi1d 461 | . . . . 5 |
4 | 3 | bibi2d 231 | . . . 4 |
5 | 4 | albidv 1804 | . . 3 |
6 | 5 | exbidv 1805 | . 2 |
7 | ax-sep 4082 | . 2 | |
8 | 1, 6, 7 | vtocl 2766 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1333 wceq 1335 wex 1472 wcel 2128 cvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: inex1 4098 bj-d0clsepcl 13460 |
Copyright terms: Public domain | W3C validator |