| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfauscl | Unicode version | ||
| Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4152, we invoke the Axiom of Extensionality (indirectly via vtocl 2818), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| zfauscl.1 |
|
| Ref | Expression |
|---|---|
| zfauscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfauscl.1 |
. 2
| |
| 2 | eleq2 2260 |
. . . . . 6
| |
| 3 | 2 | anbi1d 465 |
. . . . 5
|
| 4 | 3 | bibi2d 232 |
. . . 4
|
| 5 | 4 | albidv 1838 |
. . 3
|
| 6 | 5 | exbidv 1839 |
. 2
|
| 7 | ax-sep 4152 |
. 2
| |
| 8 | 1, 6, 7 | vtocl 2818 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: inex1 4168 bj-d0clsepcl 15655 |
| Copyright terms: Public domain | W3C validator |