Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfauscl | Unicode version |
Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4107, we invoke the Axiom of Extensionality (indirectly via vtocl 2784), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
zfauscl.1 |
Ref | Expression |
---|---|
zfauscl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfauscl.1 | . 2 | |
2 | eleq2 2234 | . . . . . 6 | |
3 | 2 | anbi1d 462 | . . . . 5 |
4 | 3 | bibi2d 231 | . . . 4 |
5 | 4 | albidv 1817 | . . 3 |
6 | 5 | exbidv 1818 | . 2 |
7 | ax-sep 4107 | . 2 | |
8 | 1, 6, 7 | vtocl 2784 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: inex1 4123 bj-d0clsepcl 13960 |
Copyright terms: Public domain | W3C validator |