ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axun2 Unicode version

Theorem axun2 4420
Description: A variant of the Axiom of Union ax-un 4418. For any set  x, there exists a set  y whose members are exactly the members of the members of  x i.e. the union of  x. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axun2  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Distinct variable group:    x, w, y, z

Proof of Theorem axun2
StepHypRef Expression
1 ax-un 4418 . 2  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
21bm1.3ii 4110 1  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-14 2144  ax-sep 4107  ax-un 4418
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator