ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axun2 Unicode version

Theorem axun2 4413
Description: A variant of the Axiom of Union ax-un 4411. For any set  x, there exists a set  y whose members are exactly the members of the members of  x i.e. the union of  x. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axun2  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Distinct variable group:    x, w, y, z

Proof of Theorem axun2
StepHypRef Expression
1 ax-un 4411 . 2  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
21bm1.3ii 4103 1  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-14 2139  ax-sep 4100  ax-un 4411
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator