ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfun Unicode version

Theorem zfun 4412
Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfun  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Distinct variable group:    x, y, z

Proof of Theorem zfun
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-un 4411 . 2  |-  E. x A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  x )
2 elequ2 2141 . . . . . . 7  |-  ( w  =  x  ->  (
y  e.  w  <->  y  e.  x ) )
3 elequ1 2140 . . . . . . 7  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
42, 3anbi12d 465 . . . . . 6  |-  ( w  =  x  ->  (
( y  e.  w  /\  w  e.  z
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
54cbvexv 1906 . . . . 5  |-  ( E. w ( y  e.  w  /\  w  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) )
65imbi1i 237 . . . 4  |-  ( ( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  x )  <->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
76albii 1458 . . 3  |-  ( A. y ( E. w
( y  e.  w  /\  w  e.  z
)  ->  y  e.  x )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
87exbii 1593 . 2  |-  ( E. x A. y ( E. w ( y  e.  w  /\  w  e.  z )  ->  y  e.  x )  <->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
91, 8mpbi 144 1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-13 2138  ax-14 2139  ax-un 4411
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  uniex2  4414  bj-uniex2  13798
  Copyright terms: Public domain W3C validator