ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-un Unicode version

Axiom ax-un 4427
Description: Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 4429 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4430. A version using class notation is uniex 4431.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4119), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266).

The union of a class df-uni 3806 should not be confused with the union of two classes df-un 3131. Their relationship is shown in unipr 3819. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-un  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, w, y, z

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7  setvar  z
2 vw . . . . . . 7  setvar  w
31, 2wel 2147 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  setvar  x
52, 4wel 2147 . . . . . 6  wff  w  e.  x
63, 5wa 104 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
76, 2wex 1490 . . . 4  wff  E. w
( z  e.  w  /\  w  e.  x
)
8 vy . . . . 5  setvar  y
91, 8wel 2147 . . . 4  wff  z  e.  y
107, 9wi 4 . . 3  wff  ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1110, 1wal 1351 . 2  wff  A. z
( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1211, 8wex 1490 1  wff  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff set class
This axiom is referenced by:  zfun  4428  axun2  4429  bj-axun2  14207
  Copyright terms: Public domain W3C validator