ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-un Unicode version

Axiom ax-un 4411
Description: Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 4413 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4414. A version using class notation is uniex 4415.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4103), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 264).

The union of a class df-uni 3790 should not be confused with the union of two classes df-un 3120. Their relationship is shown in unipr 3803. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-un  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, w, y, z

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7  setvar  z
2 vw . . . . . . 7  setvar  w
31, 2wel 2137 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  setvar  x
52, 4wel 2137 . . . . . 6  wff  w  e.  x
63, 5wa 103 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
76, 2wex 1480 . . . 4  wff  E. w
( z  e.  w  /\  w  e.  x
)
8 vy . . . . 5  setvar  y
91, 8wel 2137 . . . 4  wff  z  e.  y
107, 9wi 4 . . 3  wff  ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1110, 1wal 1341 . 2  wff  A. z
( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1211, 8wex 1480 1  wff  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff set class
This axiom is referenced by:  zfun  4412  axun2  4413  bj-axun2  13797
  Copyright terms: Public domain W3C validator