ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-un Unicode version

Axiom ax-un 4418
Description: Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 4420 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4421. A version using class notation is uniex 4422.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4110), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 264).

The union of a class df-uni 3797 should not be confused with the union of two classes df-un 3125. Their relationship is shown in unipr 3810. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-un  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, w, y, z

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7  setvar  z
2 vw . . . . . . 7  setvar  w
31, 2wel 2142 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  setvar  x
52, 4wel 2142 . . . . . 6  wff  w  e.  x
63, 5wa 103 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
76, 2wex 1485 . . . 4  wff  E. w
( z  e.  w  /\  w  e.  x
)
8 vy . . . . 5  setvar  y
91, 8wel 2142 . . . 4  wff  z  e.  y
107, 9wi 4 . . 3  wff  ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1110, 1wal 1346 . 2  wff  A. z
( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1211, 8wex 1485 1  wff  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff set class
This axiom is referenced by:  zfun  4419  axun2  4420  bj-axun2  13950
  Copyright terms: Public domain W3C validator