Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniex2 | Unicode version |
Description: The Axiom of Union using the standard abbreviation for union. Given any set , its union exists. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uniex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfun 4412 | . . . 4 | |
2 | eluni 3792 | . . . . . . 7 | |
3 | 2 | imbi1i 237 | . . . . . 6 |
4 | 3 | albii 1458 | . . . . 5 |
5 | 4 | exbii 1593 | . . . 4 |
6 | 1, 5 | mpbir 145 | . . 3 |
7 | 6 | bm1.3ii 4103 | . 2 |
8 | dfcleq 2159 | . . 3 | |
9 | 8 | exbii 1593 | . 2 |
10 | 7, 9 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-uni 3790 |
This theorem is referenced by: uniex 4415 |
Copyright terms: Public domain | W3C validator |