Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniex2 | Unicode version |
Description: The Axiom of Union using the standard abbreviation for union. Given any set , its union exists. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uniex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfun 4419 | . . . 4 | |
2 | eluni 3799 | . . . . . . 7 | |
3 | 2 | imbi1i 237 | . . . . . 6 |
4 | 3 | albii 1463 | . . . . 5 |
5 | 4 | exbii 1598 | . . . 4 |
6 | 1, 5 | mpbir 145 | . . 3 |
7 | 6 | bm1.3ii 4110 | . 2 |
8 | dfcleq 2164 | . . 3 | |
9 | 8 | exbii 1598 | . 2 |
10 | 7, 9 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-uni 3797 |
This theorem is referenced by: uniex 4422 |
Copyright terms: Public domain | W3C validator |