ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex2 Unicode version

Theorem uniex2 4421
Description: The Axiom of Union using the standard abbreviation for union. Given any set  x, its union  y exists. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uniex2  |-  E. y 
y  =  U. x
Distinct variable group:    x, y

Proof of Theorem uniex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfun 4419 . . . 4  |-  E. y A. z ( E. y
( z  e.  y  /\  y  e.  x
)  ->  z  e.  y )
2 eluni 3799 . . . . . . 7  |-  ( z  e.  U. x  <->  E. y
( z  e.  y  /\  y  e.  x
) )
32imbi1i 237 . . . . . 6  |-  ( ( z  e.  U. x  ->  z  e.  y )  <-> 
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
43albii 1463 . . . . 5  |-  ( A. z ( z  e. 
U. x  ->  z  e.  y )  <->  A. z
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
54exbii 1598 . . . 4  |-  ( E. y A. z ( z  e.  U. x  ->  z  e.  y )  <->  E. y A. z ( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
61, 5mpbir 145 . . 3  |-  E. y A. z ( z  e. 
U. x  ->  z  e.  y )
76bm1.3ii 4110 . 2  |-  E. y A. z ( z  e.  y  <->  z  e.  U. x )
8 dfcleq 2164 . . 3  |-  ( y  =  U. x  <->  A. z
( z  e.  y  <-> 
z  e.  U. x
) )
98exbii 1598 . 2  |-  ( E. y  y  =  U. x 
<->  E. y A. z
( z  e.  y  <-> 
z  e.  U. x
) )
107, 9mpbir 145 1  |-  E. y 
y  =  U. x
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-uni 3797
This theorem is referenced by:  uniex  4422
  Copyright terms: Public domain W3C validator