ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniex2 Unicode version

Theorem uniex2 4467
Description: The Axiom of Union using the standard abbreviation for union. Given any set  x, its union  y exists. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uniex2  |-  E. y 
y  =  U. x
Distinct variable group:    x, y

Proof of Theorem uniex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfun 4465 . . . 4  |-  E. y A. z ( E. y
( z  e.  y  /\  y  e.  x
)  ->  z  e.  y )
2 eluni 3838 . . . . . . 7  |-  ( z  e.  U. x  <->  E. y
( z  e.  y  /\  y  e.  x
) )
32imbi1i 238 . . . . . 6  |-  ( ( z  e.  U. x  ->  z  e.  y )  <-> 
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
43albii 1481 . . . . 5  |-  ( A. z ( z  e. 
U. x  ->  z  e.  y )  <->  A. z
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
54exbii 1616 . . . 4  |-  ( E. y A. z ( z  e.  U. x  ->  z  e.  y )  <->  E. y A. z ( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
61, 5mpbir 146 . . 3  |-  E. y A. z ( z  e. 
U. x  ->  z  e.  y )
76bm1.3ii 4150 . 2  |-  E. y A. z ( z  e.  y  <->  z  e.  U. x )
8 dfcleq 2187 . . 3  |-  ( y  =  U. x  <->  A. z
( z  e.  y  <-> 
z  e.  U. x
) )
98exbii 1616 . 2  |-  ( E. y  y  =  U. x 
<->  E. y A. z
( z  e.  y  <-> 
z  e.  U. x
) )
107, 9mpbir 146 1  |-  E. y 
y  =  U. x
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-uni 3836
This theorem is referenced by:  uniex  4468
  Copyright terms: Public domain W3C validator