| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axun2 | GIF version | ||
| Description: A variant of the Axiom of Union ax-un 4468. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| Ref | Expression |
|---|---|
| axun2 | ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-un 4468 | . 2 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | 1 | bm1.3ii 4154 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-14 2170 ax-sep 4151 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |