ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axun2 GIF version

Theorem axun2 4447
Description: A variant of the Axiom of Union ax-un 4445. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axun2 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Proof of Theorem axun2
StepHypRef Expression
1 ax-un 4445 . 2 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
21bm1.3ii 4136 1 𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1361  wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-14 2161  ax-sep 4133  ax-un 4445
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator