HomeHome Intuitionistic Logic Explorer
Theorem List (p. 45 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4401-4500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsucssel 4401 A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
 |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
 
Theoremorduniss 4402 An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
 |-  ( Ord  A  ->  U. A  C_  A )
 
Theoremonordi 4403 An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  Ord  A
 
Theoremontrci 4404 An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  Tr  A
 
Theoremoneli 4405 A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  e.  On )
 
Theoremonelssi 4406 A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  C_  A )
 
Theoremonelini 4407 An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
 
Theoremoneluni 4408 An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
 
Theoremonunisuci 4409 An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
 |-  A  e.  On   =>    |-  U. suc  A  =  A
 
2.4  IZF Set Theory - add the Axiom of Union
 
2.4.1  Introduce the Axiom of Union
 
Axiomax-un 4410* Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 4412 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4413. A version using class notation is uniex 4414.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4102), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 264).

The union of a class df-uni 3789 should not be confused with the union of two classes df-un 3119. Their relationship is shown in unipr 3802. (Contributed by NM, 23-Dec-1993.)

 |- 
 E. y A. z
 ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
 
Theoremzfun 4411* Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
 |- 
 E. x A. y
 ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x )
 
Theoremaxun2 4412* A variant of the Axiom of Union ax-un 4410. For any set  x, there exists a set  y whose members are exactly the members of the members of  x i.e. the union of  x. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theoremuniex2 4413* The Axiom of Union using the standard abbreviation for union. Given any set  x, its union  y exists. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y  y  = 
 U. x
 
Theoremuniex 4414 The Axiom of Union in class notation. This says that if  A is a set i.e.  A  e.  _V (see isset 2731), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
 |-  A  e.  _V   =>    |-  U. A  e.  _V
 
Theoremvuniex 4415 The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
 |- 
 U. x  e.  _V
 
Theoremuniexg 4416 The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent  A  e.  V instead of  A  e.  _V to make the theorem more general and thus shorten some proofs; obviously the universal class constant  _V is one possible substitution for class variable  V. (Contributed by NM, 25-Nov-1994.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theoremuniexd 4417 Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  U. A  e.  _V )
 
Theoremunex 4418 The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e.  _V
 
Theoremunexb 4419 Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theoremunexg 4420 A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B )  e.  _V )
 
Theoremtpexg 4421 An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
 |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W ) 
 ->  { A ,  B ,  C }  e.  _V )
 
Theoremunisn3 4422* Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
 |-  ( A  e.  B  ->  U. { x  e.  B  |  x  =  A }  =  A )
 
Theoremabnexg 4423* Sufficient condition for a class abstraction to be a proper class. The class  F can be thought of as an expression in  x and the abstraction appearing in the statement as the class of values  F as  x varies through  A. Assuming the antecedents, if that class is a set, then so is the "domain"  A. The converse holds without antecedent, see abrexexg 6083. Note that the second antecedent  A. x  e.  A x  e.  F cannot be translated to  A  C_  F since  F may depend on  x. In applications, one may take  F  =  { x } or  F  =  ~P x (see snnex 4425 and pwnex 4426 respectively, proved from abnex 4424, which is a consequence of abnexg 4423 with  A  =  _V). (Contributed by BJ, 2-Dec-2021.)
 |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  A  e.  _V ) )
 
Theoremabnex 4424* Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4425 and pwnex 4426. See the comment of abnexg 4423. (Contributed by BJ, 2-May-2021.)
 |-  ( A. x ( F  e.  V  /\  x  e.  F )  ->  -.  { y  | 
 E. x  y  =  F }  e.  _V )
 
Theoremsnnex 4425* The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
 |- 
 { x  |  E. y  x  =  {
 y } }  e/  _V
 
Theorempwnex 4426* The class of all power sets is a proper class. See also snnex 4425. (Contributed by BJ, 2-May-2021.)
 |- 
 { x  |  E. y  x  =  ~P y }  e/  _V
 
Theoremopeluu 4427 Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C ) )
 
Theoremuniuni 4428* Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.)
 |- 
 U. U. A  =  U. { x  |  E. y
 ( x  =  U. y  /\  y  e.  A ) }
 
Theoremeusv1 4429* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.)
 |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
 
Theoremeusvnf 4430* Even if  x is free in  A, it is effectively bound when  A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( E! y A. x  y  =  A  -> 
 F/_ x A )
 
Theoremeusvnfb 4431* Two ways to say that  A ( x ) is a set expression that does not depend on  x. (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  ( E! y A. x  y  =  A  <->  (
 F/_ x A  /\  A  e.  _V )
 )
 
Theoremeusv2i 4432* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
 |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
 
Theoremeusv2nf 4433* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   =>    |-  ( E! y E. x  y  =  A 
 <-> 
 F/_ x A )
 
Theoremeusv2 4434* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   =>    |-  ( E! y E. x  y  =  A 
 <->  E! y A. x  y  =  A )
 
Theoremreusv1 4435* Two ways to express single-valuedness of a class expression  C ( y ). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) 
 <-> 
 E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C ) ) )
 
Theoremreusv3i 4436* Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  z  ->  C  =  D )   =>    |-  ( E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D ) )
 
Theoremreusv3 4437* Two ways to express single-valuedness of a class expression  C ( y ). See reusv1 4435 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  z  ->  C  =  D )   =>    |-  ( E. y  e.  B  ( ph  /\  C  e.  A )  ->  ( A. y  e.  B  A. z  e.  B  ( ( ph  /\ 
 ps )  ->  C  =  D )  <->  E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C ) ) )
 
Theoremalxfr 4438* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
 
Theoremralxfrd 4439* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  C  x  =  A )   &    |-  (
 ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps 
 <-> 
 A. y  e.  C  ch ) )
 
Theoremrexxfrd 4440* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  C  x  =  A )   &    |-  (
 ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  B  ps 
 <-> 
 E. y  e.  C  ch ) )
 
Theoremralxfr2d 4441* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  V )   &    |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A )
 )   &    |-  ( ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps 
 <-> 
 A. y  e.  C  ch ) )
 
Theoremrexxfr2d 4442* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  V )   &    |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A )
 )   &    |-  ( ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  B  ps 
 <-> 
 E. y  e.  C  ch ) )
 
Theoremralxfr 4443* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
 
TheoremralxfrALT 4444* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. This proof does not use ralxfrd 4439. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
 
Theoremrexxfr 4445* Transfer existence from a variable 
x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
 
Theoremrabxfrd 4446* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ch. (Contributed by NM, 16-Jan-2012.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 ( ph  /\  y  e.  D )  ->  A  e.  D )   &    |-  ( x  =  A  ->  ( ps  <->  ch ) )   &    |-  ( y  =  B  ->  A  =  C )   =>    |-  ( ( ph  /\  B  e.  D )  ->  ( C  e.  { x  e.  D  |  ps }  <->  B  e.  { y  e.  D  |  ch }
 ) )
 
Theoremrabxfr 4447* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ph. (Contributed by NM, 10-Jun-2005.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 y  e.  D  ->  A  e.  D )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  A  =  C )   =>    |-  ( B  e.  D  ->  ( C  e.  { x  e.  D  |  ph
 } 
 <->  B  e.  { y  e.  D  |  ps }
 ) )
 
Theoremreuhypd 4448* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
 |-  ( ( ph  /\  x  e.  C )  ->  B  e.  C )   &    |-  ( ( ph  /\  x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( ( ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
 
Theoremreuhyp 4449* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
 |-  ( x  e.  C  ->  B  e.  C )   &    |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
 
Theoremuniexb 4450 The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  U. A  e.  _V )
 
Theorempwexb 4451 The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  ~P A  e.  _V )
 
Theoremelpwpwel 4452 A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
 |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B )
 
Theoremuniv 4453 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
 |- 
 U. _V  =  _V
 
Theoremeldifpw 4454 Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
 |-  C  e.  _V   =>    |-  ( ( A  e.  ~P B  /\  -.  C  C_  B )  ->  ( A  u.  C )  e.  ( ~P ( B  u.  C )  \  ~P B ) )
 
Theoremop1stb 4455 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 |^| |^| <. A ,  B >.  =  A
 
Theoremop1stbg 4456 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  A )
 
Theoremiunpw 4457* An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
 |-  A  e.  _V   =>    |-  ( E. x  e.  A  x  =  U. A 
 <->  ~P U. A  =  U_ x  e.  A  ~P x )
 
Theoremifelpwung 4458 Existence of a conditional class, quantitative version (closed form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  if ( ph ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
Theoremifelpwund 4459 Existence of a conditional class, quantitative version (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  ~P ( A  u.  B ) )
 
Theoremifelpwun 4460 Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 if ( ph ,  A ,  B )  e.  ~P ( A  u.  B )
 
Theoremifexd 4461 Existence of a conditional class (deduction form). (Contributed by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  _V )
 
2.4.2  Ordinals (continued)
 
Theoremordon 4462 The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
 |- 
 Ord  On
 
Theoremssorduni 4463 The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  ( A  C_  On  ->  Ord  U. A )
 
Theoremssonuni 4464 The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
 |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
 
Theoremssonunii 4465 The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  e.  On )
 
Theoremonun2 4466 The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B )  e.  On )
 
Theoremonun2i 4467 The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  u.  B )  e.  On
 
Theoremordsson 4468 Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
 |-  ( Ord  A  ->  A 
 C_  On )
 
Theoremonss 4469 An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  On  ->  A  C_  On )
 
Theoremonuni 4470 The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  e.  On  ->  U. A  e.  On )
 
Theoremorduni 4471 The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
 |-  ( Ord  A  ->  Ord  U. A )
 
Theorembm2.5ii 4472* Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
 
Theoremsucexb 4473 A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
 |-  ( A  e.  _V  <->  suc  A  e.  _V )
 
Theoremsucexg 4474 The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  V  ->  suc  A  e.  _V )
 
Theoremsucex 4475 The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   =>    |-  suc  A  e.  _V
 
Theoremordsucim 4476 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
 |-  ( Ord  A  ->  Ord 
 suc  A )
 
Theoremsuceloni 4477 The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  On  ->  suc  A  e.  On )
 
Theoremordsucg 4478 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
 |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
 )
 
Theoremsucelon 4479 The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
 |-  ( A  e.  On  <->  suc  A  e.  On )
 
Theoremordsucss 4480 The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
 |-  ( Ord  B  ->  ( A  e.  B  ->  suc 
 A  C_  B )
 )
 
Theoremordelsuc 4481 A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
 |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc 
 A  C_  B )
 )
 
Theoremonsucssi 4482 A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  e.  B  <->  suc 
 A  C_  B )
 
Theoremonsucmin 4483* The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
 |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x }
 )
 
Theoremonsucelsucr 4484 Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4506. However, the converse does hold where  B is a natural number, as seen at nnsucelsuc 6455. (Contributed by Jim Kingdon, 17-Jul-2019.)
 |-  ( B  e.  On  ->  ( suc  A  e.  suc 
 B  ->  A  e.  B ) )
 
Theoremonsucsssucr 4485 The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4503. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
 |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc 
 B  ->  A  C_  B ) )
 
Theoremsucunielr 4486 Successor and union. The converse (where  B is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4507. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( suc  A  e.  B  ->  A  e.  U. B )
 
Theoremunon 4487 The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
 |- 
 U. On  =  On
 
Theoremonuniss2 4488* The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( A  e.  On  ->  U. { x  e. 
 On  |  x  C_  A }  =  A )
 
Theoremlimon 4489 The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
 |- 
 Lim  On
 
Theoremordunisuc2r 4490* An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
 |-  ( Ord  A  ->  (
 A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
 
Theoremonssi 4491 An ordinal number is a subset of 
On. (Contributed by NM, 11-Aug-1994.)
 |-  A  e.  On   =>    |-  A  C_  On
 
Theoremonsuci 4492 The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
 |-  A  e.  On   =>    |-  suc  A  e.  On
 
Theoremonintonm 4493* The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  C_  On  /\  E. x  x  e.  A )  ->  |^| A  e.  On )
 
Theoremonintrab2im 4494 An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
 
Theoremordtriexmidlem 4495 Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4497 or weak linearity in ordsoexmid 4538) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |- 
 { x  e.  { (/)
 }  |  ph }  e.  On
 
Theoremordtriexmidlem2 4496* Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4497 or weak linearity in ordsoexmid 4538) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |-  ( { x  e. 
 { (/) }  |  ph }  =  (/)  ->  -.  ph )
 
Theoremordtriexmid 4497* Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Also see exmidontri 7191 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )   =>    |-  ( ph  \/  -.  ph )
 
Theoremontriexmidim 4498* Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4497. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  ph )
 
Theoremordtri2orexmid 4499* Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  y  C_  x )   =>    |-  ( ph  \/  -.  ph )
 
Theorem2ordpr 4500 Version of 2on 6389 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 Ord  { (/) ,  { (/) } }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >