HomeHome Intuitionistic Logic Explorer
Theorem List (p. 45 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4401-4500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfreq2 4401 Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
 |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )
 
Theoremfrforeq3 4402 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
 |-  ( S  =  T  ->  (FrFor  R A S  <-> FrFor  R A T ) )
 
Theoremnffrfor 4403 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   &    |-  F/_ x S   =>    |- 
 F/ xFrFor  R A S
 
Theoremnffr 4404 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Fr  A
 
Theoremfrirrg 4405 A well-founded relation is irreflexive. This is the case where  A exists. (Contributed by Jim Kingdon, 21-Sep-2021.)
 |-  ( ( R  Fr  A  /\  A  e.  V  /\  B  e.  A ) 
 ->  -.  B R B )
 
Theoremfr0 4406 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
 |-  R  Fr  (/)
 
Theoremfrind 4407* Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  (
 ( ch  /\  x  e.  A )  ->  ( A. y  e.  A  ( y R x 
 ->  ps )  ->  ph )
 )   &    |-  ( ch  ->  R  Fr  A )   &    |-  ( ch  ->  A  e.  V )   =>    |-  ( ( ch 
 /\  x  e.  A )  ->  ph )
 
Theoremefrirr 4408 Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
 |-  (  _E  Fr  A  ->  -.  A  e.  A )
 
Theoremtz7.2 4409 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
 |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
 
Theoremnfwe 4410 Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  We  A
 
Theoremweeq1 4411 Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
 |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
 
Theoremweeq2 4412 Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
 |-  ( A  =  B  ->  ( R  We  A  <->  R  We  B ) )
 
Theoremwefr 4413 A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
 |-  ( R  We  A  ->  R  Fr  A )
 
Theoremwepo 4414 A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
 |-  ( ( R  We  A  /\  A  e.  V )  ->  R  Po  A )
 
Theoremwetrep 4415* An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
 |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  ->  ( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
 
Theoremwe0 4416 Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
 |-  R  We  (/)
 
2.3.10  Ordinals
 
Syntaxword 4417 Extend the definition of a wff to include the ordinal predicate.
 wff  Ord  A
 
Syntaxcon0 4418 Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.)
 class  On
 
Syntaxwlim 4419 Extend the definition of a wff to include the limit ordinal predicate.
 wff  Lim  A
 
Syntaxcsuc 4420 Extend class notation to include the successor function.
 class  suc  A
 
Definitiondf-iord 4421* Define the ordinal predicate, which is true for a class that is transitive and whose elements are transitive. Definition of ordinal in [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Some sources will define a notation for ordinal order corresponding to  < and  <_ but we just use  e. and  C_ respectively.

(Contributed by Jim Kingdon, 10-Oct-2018.) Use its alias dford3 4422 instead for naming consistency with set.mm. (New usage is discouraged.)

 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
 
Theoremdford3 4422* Alias for df-iord 4421. Use it instead of df-iord 4421 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
 |-  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
 
Definitiondf-on 4423 Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.)
 |- 
 On  =  { x  |  Ord  x }
 
Definitiondf-ilim 4424 Define the limit ordinal predicate, which is true for an ordinal that has the empty set as an element and is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42, and then changes  A  =/=  (/) to  (/)  e.  A (which would be equivalent given the law of the excluded middle, but which is not for us). (Contributed by Jim Kingdon, 11-Nov-2018.) Use its alias dflim2 4425 instead for naming consistency with set.mm. (New usage is discouraged.)
 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
 
Theoremdflim2 4425 Alias for df-ilim 4424. Use it instead of df-ilim 4424 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
 |-  ( Lim  A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
 
Definitiondf-suc 4426 Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4467). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
 |- 
 suc  A  =  ( A  u.  { A }
 )
 
Theoremordeq 4427 Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )
 
Theoremelong 4428 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )
 
Theoremelon 4429 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  On 
 <-> 
 Ord  A )
 
Theoremeloni 4430 An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  On  ->  Ord  A )
 
Theoremelon2 4431 An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
 |-  ( A  e.  On  <->  ( Ord  A  /\  A  e.  _V ) )
 
Theoremlimeq 4432 Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  =  B  ->  ( Lim  A  <->  Lim  B ) )
 
Theoremordtr 4433 An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
 |-  ( Ord  A  ->  Tr  A )
 
Theoremordelss 4434 An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
 |-  ( ( Ord  A  /\  B  e.  A ) 
 ->  B  C_  A )
 
Theoremtrssord 4435 A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
 |-  ( ( Tr  A  /\  A  C_  B  /\  Ord 
 B )  ->  Ord  A )
 
Theoremordelord 4436 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
 |-  ( ( Ord  A  /\  B  e.  A ) 
 ->  Ord  B )
 
Theoremtron 4437 The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
 |- 
 Tr  On
 
Theoremordelon 4438 An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
 |-  ( ( Ord  A  /\  B  e.  A ) 
 ->  B  e.  On )
 
Theoremonelon 4439 An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
 |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
 
Theoremordin 4440 The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
 |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
 
Theoremonin 4441 The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B )  e.  On )
 
Theoremonelss 4442 An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  e.  On  ->  ( B  e.  A  ->  B  C_  A )
 )
 
Theoremordtr1 4443 Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
 |-  ( Ord  C  ->  ( ( A  e.  B  /\  B  e.  C ) 
 ->  A  e.  C ) )
 
Theoremontr1 4444 Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
 |-  ( C  e.  On  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )
 
Theoremonintss 4445* If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  On  ->  ( ps  ->  |^|
 { x  e.  On  |  ph }  C_  A ) )
 
Theoremord0 4446 The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
 |- 
 Ord  (/)
 
Theorem0elon 4447 The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.)
 |-  (/)  e.  On
 
Theoreminton 4448 The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
 |- 
 |^| On  =  (/)
 
Theoremnlim0 4449 The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |- 
 -.  Lim  (/)
 
Theoremlimord 4450 A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.)
 |-  ( Lim  A  ->  Ord 
 A )
 
Theoremlimuni 4451 A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
 |-  ( Lim  A  ->  A  =  U. A )
 
Theoremlimuni2 4452 The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
 |-  ( Lim  A  ->  Lim  U. A )
 
Theorem0ellim 4453 A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
 |-  ( Lim  A  ->  (/)  e.  A )
 
Theoremlimelon 4454 A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004.)
 |-  ( ( A  e.  B  /\  Lim  A )  ->  A  e.  On )
 
Theoremonn0 4455 The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
 |- 
 On  =/=  (/)
 
Theoremonm 4456 The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
 |- 
 E. x  x  e. 
 On
 
Theoremsuceq 4457 Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  =  B  ->  suc  A  =  suc  B )
 
Theoremelsuci 4458 Membership in a successor. This one-way implication does not require that either  A or  B be sets. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  suc  B 
 ->  ( A  e.  B  \/  A  =  B ) )
 
Theoremelsucg 4459 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
 |-  ( A  e.  V  ->  ( A  e.  suc  B  <-> 
 ( A  e.  B  \/  A  =  B ) ) )
 
Theoremelsuc2g 4460 Variant of membership in a successor, requiring that  B rather than  A be a set. (Contributed by NM, 28-Oct-2003.)
 |-  ( B  e.  V  ->  ( A  e.  suc  B  <-> 
 ( A  e.  B  \/  A  =  B ) ) )
 
Theoremelsuc 4461 Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  e.  suc 
 B 
 <->  ( A  e.  B  \/  A  =  B ) )
 
Theoremelsuc2 4462 Membership in a successor. (Contributed by NM, 15-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( B  e.  suc 
 A 
 <->  ( B  e.  A  \/  B  =  A ) )
 
Theoremnfsuc 4463 Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
 |-  F/_ x A   =>    |-  F/_ x  suc  A
 
Theoremelelsuc 4464 Membership in a successor. (Contributed by NM, 20-Jun-1998.)
 |-  ( A  e.  B  ->  A  e.  suc  B )
 
Theoremsucel 4465* Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
 |-  ( suc  A  e.  B 
 <-> 
 E. x  e.  B  A. y ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
 
Theoremsuc0 4466 The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
 |- 
 suc  (/)  =  { (/) }
 
Theoremsucprc 4467 A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
 |-  ( -.  A  e.  _V 
 ->  suc  A  =  A )
 
Theoremunisuc 4468 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( Tr  A  <->  U.
 suc  A  =  A )
 
Theoremunisucg 4469 A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
 |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
 
Theoremsssucid 4470 A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
 |-  A  C_  suc  A
 
Theoremsucidg 4471 Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
 |-  ( A  e.  V  ->  A  e.  suc  A )
 
Theoremsucid 4472 A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
 |-  A  e.  _V   =>    |-  A  e.  suc  A
 
Theoremnsuceq0g 4473 No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
 |-  ( A  e.  V  ->  suc  A  =/=  (/) )
 
Theoremeqelsuc 4474 A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  =  B  ->  A  e.  suc  B )
 
Theoremiunsuc 4475* Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  U_ x  e.  suc  A B  =  ( U_ x  e.  A  B  u.  C )
 
Theoremsuctr 4476 The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.)
 |-  ( Tr  A  ->  Tr 
 suc  A )
 
Theoremtrsuc 4477 A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )
 
Theoremtrsucss 4478 A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
 |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A )
 )
 
Theoremsucssel 4479 A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
 |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
 
Theoremorduniss 4480 An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
 |-  ( Ord  A  ->  U. A  C_  A )
 
Theoremonordi 4481 An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  Ord  A
 
Theoremontrci 4482 An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  Tr  A
 
Theoremoneli 4483 A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  e.  On )
 
Theoremonelssi 4484 A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  C_  A )
 
Theoremonelini 4485 An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
 
Theoremoneluni 4486 An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
 |-  A  e.  On   =>    |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
 
Theoremonunisuci 4487 An ordinal number is equal to the union of its successor. (Contributed by NM, 12-Jun-1994.)
 |-  A  e.  On   =>    |-  U. suc  A  =  A
 
2.4  IZF Set Theory - add the Axiom of Union
 
2.4.1  Introduce the Axiom of Union
 
Axiomax-un 4488* Axiom of Union. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 4490 states that the union itself exists. A version with the standard abbreviation for union is uniex2 4491. A version using class notation is uniex 4492.

This is Axiom 3 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4173), and (c) the order of the conjuncts is swapped (which is equivalent by ancom 266).

The union of a class df-uni 3857 should not be confused with the union of two classes df-un 3174. Their relationship is shown in unipr 3870. (Contributed by NM, 23-Dec-1993.)

 |- 
 E. y A. z
 ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
 
Theoremzfun 4489* Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
 |- 
 E. x A. y
 ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x )
 
Theoremaxun2 4490* A variant of the Axiom of Union ax-un 4488. For any set  x, there exists a set  y whose members are exactly the members of the members of  x i.e. the union of  x. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theoremuniex2 4491* The Axiom of Union using the standard abbreviation for union. Given any set  x, its union  y exists. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y  y  = 
 U. x
 
Theoremuniex 4492 The Axiom of Union in class notation. This says that if  A is a set i.e.  A  e.  _V (see isset 2780), then the union of  A is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.)
 |-  A  e.  _V   =>    |-  U. A  e.  _V
 
Theoremvuniex 4493 The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
 |- 
 U. x  e.  _V
 
Theoremuniexg 4494 The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent  A  e.  V instead of  A  e.  _V to make the theorem more general and thus shorten some proofs; obviously the universal class constant  _V is one possible substitution for class variable  V. (Contributed by NM, 25-Nov-1994.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theoremuniexd 4495 Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  U. A  e.  _V )
 
Theoremunex 4496 The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e.  _V
 
Theoremunexb 4497 Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theoremunexg 4498 A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B )  e.  _V )
 
Theoremtpexg 4499 An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
 |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W ) 
 ->  { A ,  B ,  C }  e.  _V )
 
Theoremunisn3 4500* Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
 |-  ( A  e.  B  ->  U. { x  e.  B  |  x  =  A }  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >