Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnf | Unicode version |
Description: Version of ax-bdsep 13919 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13924. Use bdsep1 13920 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
bdsepnf.nf | |
bdsepnf.1 | BOUNDED |
Ref | Expression |
---|---|
bdsepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsepnf.1 | . . 3 BOUNDED | |
2 | 1 | bdsepnft 13922 | . 2 |
3 | bdsepnf.nf | . 2 | |
4 | 2, 3 | mpg 1444 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1346 wnf 1453 wex 1485 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-bdsep 13919 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |