Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnf Unicode version

Theorem bdsepnf 14911
Description: Version of ax-bdsep 14907 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 14912. Use bdsep1 14908 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypotheses
Ref Expression
bdsepnf.nf  |-  F/ b
ph
bdsepnf.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsepnf  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Distinct variable group:    a, b, x
Allowed substitution hints:    ph( x, a, b)

Proof of Theorem bdsepnf
StepHypRef Expression
1 bdsepnf.1 . . 3  |- BOUNDED  ph
21bdsepnft 14910 . 2  |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) )
3 bdsepnf.nf . 2  |-  F/ b
ph
42, 3mpg 1461 1  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1361   F/wnf 1470   E.wex 1502  BOUNDED wbd 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-bdsep 14907
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-cleq 2180  df-clel 2183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator