Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnf | Unicode version |
Description: Version of ax-bdsep 13659 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13664. Use bdsep1 13660 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
bdsepnf.nf | |
bdsepnf.1 | BOUNDED |
Ref | Expression |
---|---|
bdsepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsepnf.1 | . . 3 BOUNDED | |
2 | 1 | bdsepnft 13662 | . 2 |
3 | bdsepnf.nf | . 2 | |
4 | 2, 3 | mpg 1438 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1340 wnf 1447 wex 1479 BOUNDED wbd 13587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-bdsep 13659 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-cleq 2157 df-clel 2160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |