Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnf GIF version

Theorem bdsepnf 13770
Description: Version of ax-bdsep 13766 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13771. Use bdsep1 13767 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypotheses
Ref Expression
bdsepnf.nf 𝑏𝜑
bdsepnf.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsepnf 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)

Proof of Theorem bdsepnf
StepHypRef Expression
1 bdsepnf.1 . . 3 BOUNDED 𝜑
21bdsepnft 13769 . 2 (∀𝑥𝑏𝜑 → ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
3 bdsepnf.nf . 2 𝑏𝜑
42, 3mpg 1439 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341  wnf 1448  wex 1480  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator