| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnf | GIF version | ||
| Description: Version of ax-bdsep 15530 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 15535. Use bdsep1 15531 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsepnf.nf | ⊢ Ⅎ𝑏𝜑 |
| bdsepnf.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bdsepnf | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsepnf.1 | . . 3 ⊢ BOUNDED 𝜑 | |
| 2 | 1 | bdsepnft 15533 | . 2 ⊢ (∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
| 3 | bdsepnf.nf | . 2 ⊢ Ⅎ𝑏𝜑 | |
| 4 | 2, 3 | mpg 1465 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 BOUNDED wbd 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |