Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnfALT Unicode version

Theorem bdsepnfALT 15381
Description: Alternate proof of bdsepnf 15380, not using bdsepnft 15379. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bdsepnf.nf  |-  F/ b
ph
bdsepnf.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsepnfALT  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Distinct variable group:    a, b, x
Allowed substitution hints:    ph( x, a, b)

Proof of Theorem bdsepnfALT
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdsepnf.1 . . 3  |- BOUNDED  ph
21bdsep2 15378 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)
3 nfv 1539 . . . . 5  |-  F/ b  x  e.  y
4 nfv 1539 . . . . . 6  |-  F/ b  x  e.  a
5 bdsepnf.nf . . . . . 6  |-  F/ b
ph
64, 5nfan 1576 . . . . 5  |-  F/ b ( x  e.  a  /\  ph )
73, 6nfbi 1600 . . . 4  |-  F/ b ( x  e.  y  <-> 
( x  e.  a  /\  ph ) )
87nfal 1587 . . 3  |-  F/ b A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)
9 nfv 1539 . . 3  |-  F/ y A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
10 elequ2 2169 . . . . 5  |-  ( y  =  b  ->  (
x  e.  y  <->  x  e.  b ) )
1110bibi1d 233 . . . 4  |-  ( y  =  b  ->  (
( x  e.  y  <-> 
( x  e.  a  /\  ph ) )  <-> 
( x  e.  b  <-> 
( x  e.  a  /\  ph ) ) ) )
1211albidv 1835 . . 3  |-  ( y  =  b  ->  ( A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)  <->  A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) ) )
138, 9, 12cbvex 1767 . 2  |-  ( E. y A. x ( x  e.  y  <->  ( x  e.  a  /\  ph )
)  <->  E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) ) )
142, 13mpbi 145 1  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362   F/wnf 1471   E.wex 1503  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2186  df-clel 2189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator