| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | Unicode version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.
In essence, Rule C states that if we can prove that some element
We cannot do this in Metamath directly. Instead, we use the original
|
| Ref | Expression |
|---|---|
| exlimiv.1 |
|
| Ref | Expression |
|---|---|
| exlimiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 |
. 2
| |
| 2 | exlimiv.1 |
. 2
| |
| 3 | 1, 2 | exlimih 1639 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1873 ax11ev 1874 equs5or 1876 exlimivv 1943 cbvexvw 1967 mo23 2119 mopick 2156 gencl 2832 cgsexg 2835 gencbvex2 2848 vtocleg 2874 eqvinc 2926 eqvincg 2927 elrabi 2956 sbcex2 3082 oprcl 3881 eluni 3891 intab 3952 uniintsnr 3959 trintssm 4198 bm1.3ii 4205 inteximm 4233 axpweq 4255 bnd2 4257 unipw 4303 euabex 4311 mss 4312 exss 4313 opelopabsb 4348 eusvnf 4544 eusvnfb 4545 regexmidlem1 4625 eunex 4653 relop 4872 dmrnssfld 4987 xpmlem 5149 dmxpss 5159 dmsnopg 5200 elxp5 5217 iotauni 5291 iota1 5293 iota4 5298 iotam 5310 funimaexglem 5404 ffoss 5604 relelfvdm 5659 elfvm 5660 nfvres 5663 fvelrnb 5681 funopsn 5817 funop 5818 funopdmsn 5819 eusvobj2 5987 acexmidlemv 5999 fnoprabg 6105 fo1stresm 6307 fo2ndresm 6308 eloprabi 6342 cnvoprab 6380 reldmtpos 6399 dftpos4 6409 tfrlem9 6465 tfrexlem 6480 ecdmn0m 6724 mapprc 6799 ixpprc 6866 ixpm 6877 bren 6895 brdomg 6897 domssr 6929 ener 6931 en0 6947 en1 6951 en1bg 6952 2dom 6958 fiprc 6968 dom1o 6977 enm 6979 ssenen 7012 php5dom 7024 ssfilem 7037 diffitest 7049 inffiexmid 7068 ctm 7276 ctssdclemr 7279 ctssdc 7280 enumct 7282 ctfoex 7285 ctssexmid 7317 pm54.43 7363 pr2cv1 7368 acnrcl 7383 subhalfnqq 7601 nqnq0pi 7625 nqnq0 7628 prarloc 7690 nqprm 7729 ltexprlemm 7787 recexprlemell 7809 recexprlemelu 7810 recexprlemopl 7812 recexprlemopu 7814 recexprlempr 7819 sup3exmid 9104 fzm 10234 fzom 10361 fclim 11805 climmo 11809 nninfct 12562 ctinfom 12999 qnnen 13002 unct 13013 omiunct 13015 opifismgmdc 13404 ismgmid 13410 gsumval2 13430 ismnd 13452 dfgrp2e 13561 dfgrp3me 13633 subgintm 13735 zrhval 14581 topnex 14760 upgrex 15903 g0wlk0 16081 bdbm1.3ii 16254 domomsubct 16367 |
| Copyright terms: Public domain | W3C validator |