ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimiv Unicode version

Theorem exlimiv 1541
Description: Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element  x exists satisfying a wff, i.e.  E. x ph ( x ) where  ph ( x ) has  x free, then we can use  ph ( C  ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original  ph (containing  x) as an antecedent for the main part of the proof. We eventually arrive at  ( ph  ->  ps ) where  ps is the theorem to be proved and does not contain  x. Then we apply exlimiv 1541 to arrive at  ( E. x ph  ->  ps ). Finally, we separately prove  E. x ph and detach it with modus ponens ax-mp 7 to arrive at the final theorem  ps. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)

Hypothesis
Ref Expression
exlimiv.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimiv  |-  ( E. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem exlimiv
StepHypRef Expression
1 ax-17 1471 . 2  |-  ( ps 
->  A. x ps )
2 exlimiv.1 . 2  |-  ( ph  ->  ps )
31, 2exlimih 1536 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-gen 1390  ax-ie2 1435  ax-17 1471
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ax11v  1762  ax11ev  1763  equs5or  1765  exlimivv  1831  mo23  1996  mopick  2033  gencl  2665  cgsexg  2668  gencbvex2  2680  vtocleg  2704  eqvinc  2754  eqvincg  2755  elrabi  2782  sbcex2  2906  oprcl  3668  eluni  3678  intab  3739  uniintsnr  3746  trintssm  3974  bm1.3ii  3981  inteximm  4006  axpweq  4027  bnd2  4029  unipw  4068  euabex  4076  mss  4077  exss  4078  opelopabsb  4111  eusvnf  4303  eusvnfb  4304  regexmidlem1  4377  eunex  4405  relop  4617  dmrnssfld  4728  xpmlem  4885  dmxpss  4895  dmsnopg  4936  elxp5  4953  iotauni  5026  iota1  5028  iota4  5032  funimaexglem  5131  ffoss  5320  relelfvdm  5371  nfvres  5372  fvelrnb  5387  eusvobj2  5676  acexmidlemv  5688  fnoprabg  5784  fo1stresm  5970  fo2ndresm  5971  eloprabi  6004  cnvoprab  6037  reldmtpos  6056  dftpos4  6066  tfrlem9  6122  tfrexlem  6137  ecdmn0m  6374  mapprc  6449  ixpprc  6516  ixpm  6527  bren  6544  brdomg  6545  ener  6576  en0  6592  en1  6596  en1bg  6597  2dom  6602  fiprc  6612  enm  6616  ssenen  6647  php5dom  6659  ssfilem  6671  diffitest  6683  inffiexmid  6702  ctm  6871  enumct  6873  pm54.43  6915  subhalfnqq  7070  nqnq0pi  7094  nqnq0  7097  prarloc  7159  nqprm  7198  ltexprlemm  7256  recexprlemell  7278  recexprlemelu  7279  recexprlemopl  7281  recexprlemopu  7283  recexprlempr  7288  sup3exmid  8515  fzm  9601  fzom  9724  fclim  10837  climmo  10841  topnex  11938  bdbm1.3ii  12490
  Copyright terms: Public domain W3C validator