| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | Unicode version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.
In essence, Rule C states that if we can prove that some element
We cannot do this in Metamath directly. Instead, we use the original
|
| Ref | Expression |
|---|---|
| exlimiv.1 |
|
| Ref | Expression |
|---|---|
| exlimiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 |
. 2
| |
| 2 | exlimiv.1 |
. 2
| |
| 3 | 1, 2 | exlimih 1617 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1851 ax11ev 1852 equs5or 1854 exlimivv 1921 cbvexvw 1945 mo23 2097 mopick 2134 gencl 2809 cgsexg 2812 gencbvex2 2825 vtocleg 2851 eqvinc 2903 eqvincg 2904 elrabi 2933 sbcex2 3059 oprcl 3857 eluni 3867 intab 3928 uniintsnr 3935 trintssm 4174 bm1.3ii 4181 inteximm 4209 axpweq 4231 bnd2 4233 unipw 4279 euabex 4287 mss 4288 exss 4289 opelopabsb 4324 eusvnf 4518 eusvnfb 4519 regexmidlem1 4599 eunex 4627 relop 4846 dmrnssfld 4960 xpmlem 5122 dmxpss 5132 dmsnopg 5173 elxp5 5190 iotauni 5263 iota1 5265 iota4 5270 iotam 5282 funimaexglem 5376 ffoss 5576 relelfvdm 5631 elfvm 5632 nfvres 5633 fvelrnb 5649 funopsn 5785 funop 5786 funopdmsn 5787 eusvobj2 5953 acexmidlemv 5965 fnoprabg 6069 fo1stresm 6270 fo2ndresm 6271 eloprabi 6305 cnvoprab 6343 reldmtpos 6362 dftpos4 6372 tfrlem9 6428 tfrexlem 6443 ecdmn0m 6687 mapprc 6762 ixpprc 6829 ixpm 6840 bren 6858 brdomg 6860 domssr 6892 ener 6894 en0 6910 en1 6914 en1bg 6915 2dom 6921 fiprc 6931 enm 6940 ssenen 6973 php5dom 6985 ssfilem 6998 diffitest 7010 inffiexmid 7029 ctm 7237 ctssdclemr 7240 ctssdc 7241 enumct 7243 ctfoex 7246 ctssexmid 7278 pm54.43 7324 pr2cv1 7329 acnrcl 7344 subhalfnqq 7562 nqnq0pi 7586 nqnq0 7589 prarloc 7651 nqprm 7690 ltexprlemm 7748 recexprlemell 7770 recexprlemelu 7771 recexprlemopl 7773 recexprlemopu 7775 recexprlempr 7780 sup3exmid 9065 fzm 10195 fzom 10322 fclim 11720 climmo 11724 nninfct 12477 ctinfom 12914 qnnen 12917 unct 12928 omiunct 12930 opifismgmdc 13318 ismgmid 13324 gsumval2 13344 ismnd 13366 dfgrp2e 13475 dfgrp3me 13547 subgintm 13649 zrhval 14494 topnex 14673 upgrex 15814 bdbm1.3ii 16026 dom1o 16128 domomsubct 16140 |
| Copyright terms: Public domain | W3C validator |