| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | Unicode version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.
In essence, Rule C states that if we can prove that some element
We cannot do this in Metamath directly. Instead, we use the original
|
| Ref | Expression |
|---|---|
| exlimiv.1 |
|
| Ref | Expression |
|---|---|
| exlimiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | exlimiv.1 |
. 2
| |
| 3 | 1, 2 | exlimih 1616 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1850 ax11ev 1851 equs5or 1853 exlimivv 1920 cbvexvw 1944 mo23 2095 mopick 2132 gencl 2804 cgsexg 2807 gencbvex2 2820 vtocleg 2844 eqvinc 2896 eqvincg 2897 elrabi 2926 sbcex2 3052 oprcl 3843 eluni 3853 intab 3914 uniintsnr 3921 trintssm 4159 bm1.3ii 4166 inteximm 4194 axpweq 4216 bnd2 4218 unipw 4262 euabex 4270 mss 4271 exss 4272 opelopabsb 4307 eusvnf 4501 eusvnfb 4502 regexmidlem1 4582 eunex 4610 relop 4829 dmrnssfld 4942 xpmlem 5104 dmxpss 5114 dmsnopg 5155 elxp5 5172 iotauni 5245 iota1 5247 iota4 5252 iotam 5264 funimaexglem 5358 ffoss 5556 relelfvdm 5610 elfvm 5611 nfvres 5612 fvelrnb 5628 funopsn 5764 funop 5765 funopdmsn 5766 eusvobj2 5932 acexmidlemv 5944 fnoprabg 6048 fo1stresm 6249 fo2ndresm 6250 eloprabi 6284 cnvoprab 6322 reldmtpos 6341 dftpos4 6351 tfrlem9 6407 tfrexlem 6422 ecdmn0m 6666 mapprc 6741 ixpprc 6808 ixpm 6819 bren 6837 brdomg 6839 domssr 6871 ener 6873 en0 6889 en1 6893 en1bg 6894 2dom 6899 fiprc 6909 enm 6917 ssenen 6950 php5dom 6962 ssfilem 6974 diffitest 6986 inffiexmid 7005 ctm 7213 ctssdclemr 7216 ctssdc 7217 enumct 7219 ctfoex 7222 ctssexmid 7254 pm54.43 7300 acnrcl 7315 subhalfnqq 7529 nqnq0pi 7553 nqnq0 7556 prarloc 7618 nqprm 7657 ltexprlemm 7715 recexprlemell 7737 recexprlemelu 7738 recexprlemopl 7740 recexprlemopu 7742 recexprlempr 7747 sup3exmid 9032 fzm 10162 fzom 10289 fclim 11638 climmo 11642 nninfct 12395 ctinfom 12832 qnnen 12835 unct 12846 omiunct 12848 opifismgmdc 13236 ismgmid 13242 gsumval2 13262 ismnd 13284 dfgrp2e 13393 dfgrp3me 13465 subgintm 13567 zrhval 14412 topnex 14591 bdbm1.3ii 15864 domomsubct 15975 |
| Copyright terms: Public domain | W3C validator |