| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | Unicode version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.
In essence, Rule C states that if we can prove that some element
We cannot do this in Metamath directly. Instead, we use the original
|
| Ref | Expression |
|---|---|
| exlimiv.1 |
|
| Ref | Expression |
|---|---|
| exlimiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | exlimiv.1 |
. 2
| |
| 3 | 1, 2 | exlimih 1616 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1850 ax11ev 1851 equs5or 1853 exlimivv 1920 cbvexvw 1944 mo23 2095 mopick 2132 gencl 2804 cgsexg 2807 gencbvex2 2820 vtocleg 2844 eqvinc 2896 eqvincg 2897 elrabi 2926 sbcex2 3052 oprcl 3843 eluni 3853 intab 3914 uniintsnr 3921 trintssm 4158 bm1.3ii 4165 inteximm 4193 axpweq 4215 bnd2 4217 unipw 4261 euabex 4269 mss 4270 exss 4271 opelopabsb 4306 eusvnf 4500 eusvnfb 4501 regexmidlem1 4581 eunex 4609 relop 4828 dmrnssfld 4941 xpmlem 5103 dmxpss 5113 dmsnopg 5154 elxp5 5171 iotauni 5244 iota1 5246 iota4 5251 iotam 5263 funimaexglem 5357 ffoss 5554 relelfvdm 5608 elfvm 5609 nfvres 5610 fvelrnb 5626 funopsn 5762 funop 5763 funopdmsn 5764 eusvobj2 5930 acexmidlemv 5942 fnoprabg 6046 fo1stresm 6247 fo2ndresm 6248 eloprabi 6282 cnvoprab 6320 reldmtpos 6339 dftpos4 6349 tfrlem9 6405 tfrexlem 6420 ecdmn0m 6664 mapprc 6739 ixpprc 6806 ixpm 6817 bren 6835 brdomg 6837 domssr 6869 ener 6871 en0 6887 en1 6891 en1bg 6892 2dom 6897 fiprc 6907 enm 6915 ssenen 6948 php5dom 6960 ssfilem 6972 diffitest 6984 inffiexmid 7003 ctm 7211 ctssdclemr 7214 ctssdc 7215 enumct 7217 ctfoex 7220 ctssexmid 7252 pm54.43 7298 acnrcl 7313 subhalfnqq 7527 nqnq0pi 7551 nqnq0 7554 prarloc 7616 nqprm 7655 ltexprlemm 7713 recexprlemell 7735 recexprlemelu 7736 recexprlemopl 7738 recexprlemopu 7740 recexprlempr 7745 sup3exmid 9030 fzm 10160 fzom 10287 fclim 11605 climmo 11609 nninfct 12362 ctinfom 12799 qnnen 12802 unct 12813 omiunct 12815 opifismgmdc 13203 ismgmid 13209 gsumval2 13229 ismnd 13251 dfgrp2e 13360 dfgrp3me 13432 subgintm 13534 zrhval 14379 topnex 14558 bdbm1.3ii 15827 domomsubct 15938 |
| Copyright terms: Public domain | W3C validator |