![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimiv | Unicode version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.
In essence, Rule C states that if we can prove that some element
We cannot do this in Metamath directly. Instead, we use the original
|
Ref | Expression |
---|---|
exlimiv.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimiv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimiv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | exlimih 1593 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1827 ax11ev 1828 equs5or 1830 exlimivv 1896 cbvexvw 1920 mo23 2067 mopick 2104 gencl 2770 cgsexg 2773 gencbvex2 2785 vtocleg 2809 eqvinc 2861 eqvincg 2862 elrabi 2891 sbcex2 3017 oprcl 3803 eluni 3813 intab 3874 uniintsnr 3881 trintssm 4118 bm1.3ii 4125 inteximm 4150 axpweq 4172 bnd2 4174 unipw 4218 euabex 4226 mss 4227 exss 4228 opelopabsb 4261 eusvnf 4454 eusvnfb 4455 regexmidlem1 4533 eunex 4561 relop 4778 dmrnssfld 4891 xpmlem 5050 dmxpss 5060 dmsnopg 5101 elxp5 5118 iotauni 5191 iota1 5193 iota4 5197 iotam 5209 funimaexglem 5300 ffoss 5494 relelfvdm 5548 nfvres 5549 fvelrnb 5564 eusvobj2 5861 acexmidlemv 5873 fnoprabg 5976 fo1stresm 6162 fo2ndresm 6163 eloprabi 6197 cnvoprab 6235 reldmtpos 6254 dftpos4 6264 tfrlem9 6320 tfrexlem 6335 ecdmn0m 6577 mapprc 6652 ixpprc 6719 ixpm 6730 bren 6747 brdomg 6748 ener 6779 en0 6795 en1 6799 en1bg 6800 2dom 6805 fiprc 6815 enm 6820 ssenen 6851 php5dom 6863 ssfilem 6875 diffitest 6887 inffiexmid 6906 ctm 7108 ctssdclemr 7111 ctssdc 7112 enumct 7114 ctfoex 7117 ctssexmid 7148 pm54.43 7189 subhalfnqq 7413 nqnq0pi 7437 nqnq0 7440 prarloc 7502 nqprm 7541 ltexprlemm 7599 recexprlemell 7621 recexprlemelu 7622 recexprlemopl 7624 recexprlemopu 7626 recexprlempr 7631 sup3exmid 8914 fzm 10038 fzom 10164 fclim 11302 climmo 11306 ctinfom 12429 qnnen 12432 unct 12443 omiunct 12445 opifismgmdc 12790 ismgmid 12796 ismnd 12820 dfgrp2e 12903 dfgrp3me 12970 subgintm 13058 topnex 13589 bdbm1.3ii 14646 |
Copyright terms: Public domain | W3C validator |