Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 Unicode version

Theorem bj-inf2vnlem1 13556
Description: Lemma for bj-inf2vn 13560. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Distinct variable group:    x, A, y

Proof of Theorem bj-inf2vnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 biimpr 129 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  x  e.  A ) )
2 jaob 700 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  <->  ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
32biimpi 119 . . . . 5  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( (
x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
4 simpl 108 . . . . . 6  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  ->  x  e.  A ) )
5 eleq1 2220 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
64, 5mpbidi 150 . . . . 5  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
71, 3, 63syl 17 . . . 4  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
87alimi 1435 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  =  (/)  ->  (/)  e.  A ) )
9 exim 1579 . . 3  |-  ( A. x ( x  =  (/)  ->  (/)  e.  A )  ->  ( E. x  x  =  (/)  ->  E. x (/) 
e.  A ) )
10 0ex 4091 . . . . . 6  |-  (/)  e.  _V
1110isseti 2720 . . . . 5  |-  E. x  x  =  (/)
12 pm2.27 40 . . . . 5  |-  ( E. x  x  =  (/)  ->  ( ( E. x  x  =  (/)  ->  E. x (/) 
e.  A )  ->  E. x (/)  e.  A
) )
1311, 12ax-mp 5 . . . 4  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  E. x (/) 
e.  A )
14 bj-ex 13347 . . . 4  |-  ( E. x (/)  e.  A  -> 
(/)  e.  A )
1513, 14syl 14 . . 3  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  (/)  e.  A
)
168, 9, 153syl 17 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  (/) 
e.  A )
173simprd 113 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
181, 17syl 14 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( E. y  e.  A  x  =  suc  y  ->  x  e.  A
) )
1918alimi 1435 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
20 eqid 2157 . . . . 5  |-  suc  z  =  suc  z
21 suceq 4362 . . . . . . 7  |-  ( y  =  z  ->  suc  y  =  suc  z )
2221eqeq2d 2169 . . . . . 6  |-  ( y  =  z  ->  ( suc  z  =  suc  y 
<->  suc  z  =  suc  z ) )
2322rspcev 2816 . . . . 5  |-  ( ( z  e.  A  /\  suc  z  =  suc  z )  ->  E. y  e.  A  suc  z  =  suc  y )
2420, 23mpan2 422 . . . 4  |-  ( z  e.  A  ->  E. y  e.  A  suc  z  =  suc  y )
25 vex 2715 . . . . . 6  |-  z  e. 
_V
2625bj-sucex 13509 . . . . 5  |-  suc  z  e.  _V
27 eqeq1 2164 . . . . . . 7  |-  ( x  =  suc  z  -> 
( x  =  suc  y 
<->  suc  z  =  suc  y ) )
2827rexbidv 2458 . . . . . 6  |-  ( x  =  suc  z  -> 
( E. y  e.  A  x  =  suc  y 
<->  E. y  e.  A  suc  z  =  suc  y ) )
29 eleq1 2220 . . . . . 6  |-  ( x  =  suc  z  -> 
( x  e.  A  <->  suc  z  e.  A ) )
3028, 29imbi12d 233 . . . . 5  |-  ( x  =  suc  z  -> 
( ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  <->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A
) ) )
3126, 30spcv 2806 . . . 4  |-  ( A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  ->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A ) )
3219, 24, 31syl2im 38 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( z  e.  A  ->  suc  z  e.  A
) )
3332ralrimiv 2529 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z  e.  A  suc  z  e.  A
)
34 df-bj-ind 13513 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. z  e.  A  suc  z  e.  A )
)
3516, 33, 34sylanbrc 414 1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1333    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   E.wrex 2436   (/)c0 3394   suc csuc 4325  Ind wind 13512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-nul 4090  ax-pr 4169  ax-un 4393  ax-bd0 13399  ax-bdor 13402  ax-bdex 13405  ax-bdeq 13406  ax-bdel 13407  ax-bdsb 13408  ax-bdsep 13470
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-nul 3395  df-sn 3566  df-pr 3567  df-uni 3773  df-suc 4331  df-bdc 13427  df-bj-ind 13513
This theorem is referenced by:  bj-inf2vn  13560  bj-inf2vn2  13561
  Copyright terms: Public domain W3C validator