Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 Unicode version

Theorem bj-inf2vnlem1 13064
Description: Lemma for bj-inf2vn 13068. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Distinct variable group:    x, A, y

Proof of Theorem bj-inf2vnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bi2 129 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  x  e.  A ) )
2 jaob 684 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  <->  ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
32biimpi 119 . . . . 5  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( (
x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
4 simpl 108 . . . . . 6  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  ->  x  e.  A ) )
5 eleq1 2180 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
64, 5mpbidi 150 . . . . 5  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
71, 3, 63syl 17 . . . 4  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
87alimi 1416 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  =  (/)  ->  (/)  e.  A ) )
9 exim 1563 . . 3  |-  ( A. x ( x  =  (/)  ->  (/)  e.  A )  ->  ( E. x  x  =  (/)  ->  E. x (/) 
e.  A ) )
10 0ex 4025 . . . . . 6  |-  (/)  e.  _V
1110isseti 2668 . . . . 5  |-  E. x  x  =  (/)
12 pm2.27 40 . . . . 5  |-  ( E. x  x  =  (/)  ->  ( ( E. x  x  =  (/)  ->  E. x (/) 
e.  A )  ->  E. x (/)  e.  A
) )
1311, 12ax-mp 5 . . . 4  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  E. x (/) 
e.  A )
14 bj-ex 12865 . . . 4  |-  ( E. x (/)  e.  A  -> 
(/)  e.  A )
1513, 14syl 14 . . 3  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  (/)  e.  A
)
168, 9, 153syl 17 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  (/) 
e.  A )
173simprd 113 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
181, 17syl 14 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( E. y  e.  A  x  =  suc  y  ->  x  e.  A
) )
1918alimi 1416 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
20 eqid 2117 . . . . 5  |-  suc  z  =  suc  z
21 suceq 4294 . . . . . . 7  |-  ( y  =  z  ->  suc  y  =  suc  z )
2221eqeq2d 2129 . . . . . 6  |-  ( y  =  z  ->  ( suc  z  =  suc  y 
<->  suc  z  =  suc  z ) )
2322rspcev 2763 . . . . 5  |-  ( ( z  e.  A  /\  suc  z  =  suc  z )  ->  E. y  e.  A  suc  z  =  suc  y )
2420, 23mpan2 421 . . . 4  |-  ( z  e.  A  ->  E. y  e.  A  suc  z  =  suc  y )
25 vex 2663 . . . . . 6  |-  z  e. 
_V
2625bj-sucex 13017 . . . . 5  |-  suc  z  e.  _V
27 eqeq1 2124 . . . . . . 7  |-  ( x  =  suc  z  -> 
( x  =  suc  y 
<->  suc  z  =  suc  y ) )
2827rexbidv 2415 . . . . . 6  |-  ( x  =  suc  z  -> 
( E. y  e.  A  x  =  suc  y 
<->  E. y  e.  A  suc  z  =  suc  y ) )
29 eleq1 2180 . . . . . 6  |-  ( x  =  suc  z  -> 
( x  e.  A  <->  suc  z  e.  A ) )
3028, 29imbi12d 233 . . . . 5  |-  ( x  =  suc  z  -> 
( ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  <->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A
) ) )
3126, 30spcv 2753 . . . 4  |-  ( A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  ->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A ) )
3219, 24, 31syl2im 38 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( z  e.  A  ->  suc  z  e.  A
) )
3332ralrimiv 2481 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z  e.  A  suc  z  e.  A
)
34 df-bj-ind 13021 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. z  e.  A  suc  z  e.  A )
)
3516, 33, 34sylanbrc 413 1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682   A.wal 1314    = wceq 1316   E.wex 1453    e. wcel 1465   A.wral 2393   E.wrex 2394   (/)c0 3333   suc csuc 4257  Ind wind 13020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-nul 4024  ax-pr 4101  ax-un 4325  ax-bd0 12907  ax-bdor 12910  ax-bdex 12913  ax-bdeq 12914  ax-bdel 12915  ax-bdsb 12916  ax-bdsep 12978
This theorem depends on definitions:  df-bi 116  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-dif 3043  df-un 3045  df-nul 3334  df-sn 3503  df-pr 3504  df-uni 3707  df-suc 4263  df-bdc 12935  df-bj-ind 13021
This theorem is referenced by:  bj-inf2vn  13068  bj-inf2vn2  13069
  Copyright terms: Public domain W3C validator