Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 Unicode version

Theorem bj-inf2vnlem1 14378
Description: Lemma for bj-inf2vn 14382. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Distinct variable group:    x, A, y

Proof of Theorem bj-inf2vnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 biimpr 130 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  x  e.  A ) )
2 jaob 710 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  <->  ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
32biimpi 120 . . . . 5  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( (
x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
4 simpl 109 . . . . . 6  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  ->  x  e.  A ) )
5 eleq1 2240 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
64, 5mpbidi 151 . . . . 5  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
71, 3, 63syl 17 . . . 4  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
87alimi 1455 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  =  (/)  ->  (/)  e.  A ) )
9 exim 1599 . . 3  |-  ( A. x ( x  =  (/)  ->  (/)  e.  A )  ->  ( E. x  x  =  (/)  ->  E. x (/) 
e.  A ) )
10 0ex 4127 . . . . . 6  |-  (/)  e.  _V
1110isseti 2745 . . . . 5  |-  E. x  x  =  (/)
12 pm2.27 40 . . . . 5  |-  ( E. x  x  =  (/)  ->  ( ( E. x  x  =  (/)  ->  E. x (/) 
e.  A )  ->  E. x (/)  e.  A
) )
1311, 12ax-mp 5 . . . 4  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  E. x (/) 
e.  A )
14 bj-ex 14170 . . . 4  |-  ( E. x (/)  e.  A  -> 
(/)  e.  A )
1513, 14syl 14 . . 3  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  (/)  e.  A
)
168, 9, 153syl 17 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  (/) 
e.  A )
173simprd 114 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
181, 17syl 14 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( E. y  e.  A  x  =  suc  y  ->  x  e.  A
) )
1918alimi 1455 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
20 eqid 2177 . . . . 5  |-  suc  z  =  suc  z
21 suceq 4399 . . . . . . 7  |-  ( y  =  z  ->  suc  y  =  suc  z )
2221eqeq2d 2189 . . . . . 6  |-  ( y  =  z  ->  ( suc  z  =  suc  y 
<->  suc  z  =  suc  z ) )
2322rspcev 2841 . . . . 5  |-  ( ( z  e.  A  /\  suc  z  =  suc  z )  ->  E. y  e.  A  suc  z  =  suc  y )
2420, 23mpan2 425 . . . 4  |-  ( z  e.  A  ->  E. y  e.  A  suc  z  =  suc  y )
25 vex 2740 . . . . . 6  |-  z  e. 
_V
2625bj-sucex 14331 . . . . 5  |-  suc  z  e.  _V
27 eqeq1 2184 . . . . . . 7  |-  ( x  =  suc  z  -> 
( x  =  suc  y 
<->  suc  z  =  suc  y ) )
2827rexbidv 2478 . . . . . 6  |-  ( x  =  suc  z  -> 
( E. y  e.  A  x  =  suc  y 
<->  E. y  e.  A  suc  z  =  suc  y ) )
29 eleq1 2240 . . . . . 6  |-  ( x  =  suc  z  -> 
( x  e.  A  <->  suc  z  e.  A ) )
3028, 29imbi12d 234 . . . . 5  |-  ( x  =  suc  z  -> 
( ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  <->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A
) ) )
3126, 30spcv 2831 . . . 4  |-  ( A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  ->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A ) )
3219, 24, 31syl2im 38 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( z  e.  A  ->  suc  z  e.  A
) )
3332ralrimiv 2549 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z  e.  A  suc  z  e.  A
)
34 df-bj-ind 14335 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. z  e.  A  suc  z  e.  A )
)
3516, 33, 34sylanbrc 417 1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   (/)c0 3422   suc csuc 4362  Ind wind 14334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4126  ax-pr 4206  ax-un 4430  ax-bd0 14221  ax-bdor 14224  ax-bdex 14227  ax-bdeq 14228  ax-bdel 14229  ax-bdsb 14230  ax-bdsep 14292
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-nul 3423  df-sn 3597  df-pr 3598  df-uni 3808  df-suc 4368  df-bdc 14249  df-bj-ind 14335
This theorem is referenced by:  bj-inf2vn  14382  bj-inf2vn2  14383
  Copyright terms: Public domain W3C validator