| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem1 | Unicode version | ||
| Description: Lemma for bj-inf2vn 16337. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inf2vnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 130 |
. . . . 5
| |
| 2 | jaob 715 |
. . . . . 6
| |
| 3 | 2 | biimpi 120 |
. . . . 5
|
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | eleq1 2292 |
. . . . . 6
| |
| 6 | 4, 5 | mpbidi 151 |
. . . . 5
|
| 7 | 1, 3, 6 | 3syl 17 |
. . . 4
|
| 8 | 7 | alimi 1501 |
. . 3
|
| 9 | exim 1645 |
. . 3
| |
| 10 | 0ex 4211 |
. . . . . 6
| |
| 11 | 10 | isseti 2808 |
. . . . 5
|
| 12 | pm2.27 40 |
. . . . 5
| |
| 13 | 11, 12 | ax-mp 5 |
. . . 4
|
| 14 | bj-ex 16126 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 8, 9, 15 | 3syl 17 |
. 2
|
| 17 | 3 | simprd 114 |
. . . . . 6
|
| 18 | 1, 17 | syl 14 |
. . . . 5
|
| 19 | 18 | alimi 1501 |
. . . 4
|
| 20 | eqid 2229 |
. . . . 5
| |
| 21 | suceq 4493 |
. . . . . . 7
| |
| 22 | 21 | eqeq2d 2241 |
. . . . . 6
|
| 23 | 22 | rspcev 2907 |
. . . . 5
|
| 24 | 20, 23 | mpan2 425 |
. . . 4
|
| 25 | vex 2802 |
. . . . . 6
| |
| 26 | 25 | bj-sucex 16286 |
. . . . 5
|
| 27 | eqeq1 2236 |
. . . . . . 7
| |
| 28 | 27 | rexbidv 2531 |
. . . . . 6
|
| 29 | eleq1 2292 |
. . . . . 6
| |
| 30 | 28, 29 | imbi12d 234 |
. . . . 5
|
| 31 | 26, 30 | spcv 2897 |
. . . 4
|
| 32 | 19, 24, 31 | syl2im 38 |
. . 3
|
| 33 | 32 | ralrimiv 2602 |
. 2
|
| 34 | df-bj-ind 16290 |
. 2
| |
| 35 | 16, 33, 34 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-suc 4462 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-inf2vn 16337 bj-inf2vn2 16338 |
| Copyright terms: Public domain | W3C validator |