Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0sucALT Unicode version

Theorem bj-nn0sucALT 15470
Description: Alternate proof of bj-nn0suc 15456, also constructive but from ax-inf2 15468, hence requiring ax-bdsetind 15460. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nn0sucALT  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0sucALT
Dummy variables  a  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 15468 . . 3  |-  E. a A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )
2 vex 2763 . . . . 5  |-  a  e. 
_V
3 bdcv 15340 . . . . . 6  |- BOUNDED  a
43bj-inf2vn 15466 . . . . 5  |-  ( a  e.  _V  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
)
52, 4ax-mp 5 . . . 4  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
6 eleq2 2257 . . . . . . 7  |-  ( a  =  om  ->  (
y  e.  a  <->  y  e.  om ) )
7 rexeq 2691 . . . . . . . 8  |-  ( a  =  om  ->  ( E. z  e.  a 
y  =  suc  z  <->  E. z  e.  om  y  =  suc  z ) )
87orbi2d 791 . . . . . . 7  |-  ( a  =  om  ->  (
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
)  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) )
96, 8bibi12d 235 . . . . . 6  |-  ( a  =  om  ->  (
( y  e.  a  <-> 
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
) )  <->  ( y  e.  om  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) ) )
109albidv 1835 . . . . 5  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  <->  A. y
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) ) ) )
11 nfcv 2336 . . . . . . . 8  |-  F/_ y A
12 nfv 1539 . . . . . . . 8  |-  F/ y ( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )
13 eleq1 2256 . . . . . . . . . 10  |-  ( y  =  A  ->  (
y  e.  om  <->  A  e.  om ) )
14 eqeq1 2200 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
15 suceq 4433 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  suc  z  =  suc  x )
1615eqeq2d 2205 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
y  =  suc  z  <->  y  =  suc  x ) )
1716cbvrexv 2727 . . . . . . . . . . . 12  |-  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  y  =  suc  x )
18 eqeq1 2200 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1918rexbidv 2495 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
2017, 19bitrid 192 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  A  =  suc  x ) )
2114, 20orbi12d 794 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2213, 21bibi12d 235 . . . . . . . . 9  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  <-> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
23 biimp 118 . . . . . . . . 9  |-  ( ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )  -> 
( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2422, 23biimtrdi 163 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  ->  ( A  e. 
om  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) ) )
2511, 12, 24spcimgf 2840 . . . . . . 7  |-  ( A  e.  om  ->  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
2625pm2.43b 52 . . . . . 6  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
27 peano1 4626 . . . . . . . 8  |-  (/)  e.  om
28 eleq1 2256 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
2927, 28mpbiri 168 . . . . . . 7  |-  ( A  =  (/)  ->  A  e. 
om )
30 bj-peano2 15431 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
31 eleq1a 2265 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
3231imp 124 . . . . . . . . 9  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
3330, 32sylan 283 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
3433rexlimiva 2606 . . . . . . 7  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
3529, 34jaoi 717 . . . . . 6  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
3626, 35impbid1 142 . . . . 5  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
3710, 36biimtrdi 163 . . . 4  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
385, 37mpcom 36 . . 3  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
391, 38eximii 1613 . 2  |-  E. a
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
40 bj-ex 15254 . 2  |-  ( E. a ( A  e. 
om 
<->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
4139, 40ax-mp 5 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   _Vcvv 2760   (/)c0 3446   suc csuc 4396   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdim 15306  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-bdsetind 15460  ax-inf2 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator