Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0sucALT Unicode version

Theorem bj-nn0sucALT 16113
Description: Alternate proof of bj-nn0suc 16099, also constructive but from ax-inf2 16111, hence requiring ax-bdsetind 16103. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nn0sucALT  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0sucALT
Dummy variables  a  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 16111 . . 3  |-  E. a A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )
2 vex 2779 . . . . 5  |-  a  e. 
_V
3 bdcv 15983 . . . . . 6  |- BOUNDED  a
43bj-inf2vn 16109 . . . . 5  |-  ( a  e.  _V  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
)
52, 4ax-mp 5 . . . 4  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
6 eleq2 2271 . . . . . . 7  |-  ( a  =  om  ->  (
y  e.  a  <->  y  e.  om ) )
7 rexeq 2706 . . . . . . . 8  |-  ( a  =  om  ->  ( E. z  e.  a 
y  =  suc  z  <->  E. z  e.  om  y  =  suc  z ) )
87orbi2d 792 . . . . . . 7  |-  ( a  =  om  ->  (
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
)  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) )
96, 8bibi12d 235 . . . . . 6  |-  ( a  =  om  ->  (
( y  e.  a  <-> 
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
) )  <->  ( y  e.  om  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) ) )
109albidv 1848 . . . . 5  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  <->  A. y
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) ) ) )
11 nfcv 2350 . . . . . . . 8  |-  F/_ y A
12 nfv 1552 . . . . . . . 8  |-  F/ y ( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )
13 eleq1 2270 . . . . . . . . . 10  |-  ( y  =  A  ->  (
y  e.  om  <->  A  e.  om ) )
14 eqeq1 2214 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
15 suceq 4467 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  suc  z  =  suc  x )
1615eqeq2d 2219 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
y  =  suc  z  <->  y  =  suc  x ) )
1716cbvrexv 2743 . . . . . . . . . . . 12  |-  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  y  =  suc  x )
18 eqeq1 2214 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1918rexbidv 2509 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
2017, 19bitrid 192 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  A  =  suc  x ) )
2114, 20orbi12d 795 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2213, 21bibi12d 235 . . . . . . . . 9  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  <-> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
23 biimp 118 . . . . . . . . 9  |-  ( ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )  -> 
( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2422, 23biimtrdi 163 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  ->  ( A  e. 
om  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) ) )
2511, 12, 24spcimgf 2860 . . . . . . 7  |-  ( A  e.  om  ->  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
2625pm2.43b 52 . . . . . 6  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
27 peano1 4660 . . . . . . . 8  |-  (/)  e.  om
28 eleq1 2270 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
2927, 28mpbiri 168 . . . . . . 7  |-  ( A  =  (/)  ->  A  e. 
om )
30 bj-peano2 16074 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
31 eleq1a 2279 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
3231imp 124 . . . . . . . . 9  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
3330, 32sylan 283 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
3433rexlimiva 2620 . . . . . . 7  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
3529, 34jaoi 718 . . . . . 6  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
3626, 35impbid1 142 . . . . 5  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
3710, 36biimtrdi 163 . . . 4  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
385, 37mpcom 36 . . 3  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
391, 38eximii 1626 . 2  |-  E. a
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
40 bj-ex 15898 . 2  |-  ( E. a ( A  e. 
om 
<->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
4139, 40ax-mp 5 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   _Vcvv 2776   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdim 15949  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-bdsetind 16103  ax-inf2 16111
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator