Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0sucALT | Unicode version |
Description: Alternate proof of bj-nn0suc 13510, also constructive but from ax-inf2 13522, hence requiring ax-bdsetind 13514. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-nn0sucALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf2 13522 | . . 3 | |
2 | vex 2715 | . . . . 5 | |
3 | bdcv 13394 | . . . . . 6 BOUNDED | |
4 | 3 | bj-inf2vn 13520 | . . . . 5 |
5 | 2, 4 | ax-mp 5 | . . . 4 |
6 | eleq2 2221 | . . . . . . 7 | |
7 | rexeq 2653 | . . . . . . . 8 | |
8 | 7 | orbi2d 780 | . . . . . . 7 |
9 | 6, 8 | bibi12d 234 | . . . . . 6 |
10 | 9 | albidv 1804 | . . . . 5 |
11 | nfcv 2299 | . . . . . . . 8 | |
12 | nfv 1508 | . . . . . . . 8 | |
13 | eleq1 2220 | . . . . . . . . . 10 | |
14 | eqeq1 2164 | . . . . . . . . . . 11 | |
15 | suceq 4362 | . . . . . . . . . . . . . 14 | |
16 | 15 | eqeq2d 2169 | . . . . . . . . . . . . 13 |
17 | 16 | cbvrexv 2681 | . . . . . . . . . . . 12 |
18 | eqeq1 2164 | . . . . . . . . . . . . 13 | |
19 | 18 | rexbidv 2458 | . . . . . . . . . . . 12 |
20 | 17, 19 | syl5bb 191 | . . . . . . . . . . 11 |
21 | 14, 20 | orbi12d 783 | . . . . . . . . . 10 |
22 | 13, 21 | bibi12d 234 | . . . . . . . . 9 |
23 | biimp 117 | . . . . . . . . 9 | |
24 | 22, 23 | syl6bi 162 | . . . . . . . 8 |
25 | 11, 12, 24 | spcimgf 2792 | . . . . . . 7 |
26 | 25 | pm2.43b 52 | . . . . . 6 |
27 | peano1 4552 | . . . . . . . 8 | |
28 | eleq1 2220 | . . . . . . . 8 | |
29 | 27, 28 | mpbiri 167 | . . . . . . 7 |
30 | bj-peano2 13485 | . . . . . . . . 9 | |
31 | eleq1a 2229 | . . . . . . . . . 10 | |
32 | 31 | imp 123 | . . . . . . . . 9 |
33 | 30, 32 | sylan 281 | . . . . . . . 8 |
34 | 33 | rexlimiva 2569 | . . . . . . 7 |
35 | 29, 34 | jaoi 706 | . . . . . 6 |
36 | 26, 35 | impbid1 141 | . . . . 5 |
37 | 10, 36 | syl6bi 162 | . . . 4 |
38 | 5, 37 | mpcom 36 | . . 3 |
39 | 1, 38 | eximii 1582 | . 2 |
40 | bj-ex 13307 | . 2 | |
41 | 39, 40 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wal 1333 wceq 1335 wex 1472 wcel 2128 wrex 2436 cvv 2712 c0 3394 csuc 4325 com 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-nul 4090 ax-pr 4169 ax-un 4393 ax-bd0 13359 ax-bdim 13360 ax-bdor 13362 ax-bdex 13365 ax-bdeq 13366 ax-bdel 13367 ax-bdsb 13368 ax-bdsep 13430 ax-bdsetind 13514 ax-inf2 13522 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4331 df-iom 4549 df-bdc 13387 df-bj-ind 13473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |