Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0sucALT Unicode version

Theorem bj-nn0sucALT 13860
Description: Alternate proof of bj-nn0suc 13846, also constructive but from ax-inf2 13858, hence requiring ax-bdsetind 13850. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nn0sucALT  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0sucALT
Dummy variables  a  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 13858 . . 3  |-  E. a A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )
2 vex 2729 . . . . 5  |-  a  e. 
_V
3 bdcv 13730 . . . . . 6  |- BOUNDED  a
43bj-inf2vn 13856 . . . . 5  |-  ( a  e.  _V  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
)
52, 4ax-mp 5 . . . 4  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
a  =  om )
6 eleq2 2230 . . . . . . 7  |-  ( a  =  om  ->  (
y  e.  a  <->  y  e.  om ) )
7 rexeq 2662 . . . . . . . 8  |-  ( a  =  om  ->  ( E. z  e.  a 
y  =  suc  z  <->  E. z  e.  om  y  =  suc  z ) )
87orbi2d 780 . . . . . . 7  |-  ( a  =  om  ->  (
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
)  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) )
96, 8bibi12d 234 . . . . . 6  |-  ( a  =  om  ->  (
( y  e.  a  <-> 
( y  =  (/)  \/ 
E. z  e.  a  y  =  suc  z
) )  <->  ( y  e.  om  <->  ( y  =  (/)  \/  E. z  e. 
om  y  =  suc  z ) ) ) )
109albidv 1812 . . . . 5  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  <->  A. y
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) ) ) )
11 nfcv 2308 . . . . . . . 8  |-  F/_ y A
12 nfv 1516 . . . . . . . 8  |-  F/ y ( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )
13 eleq1 2229 . . . . . . . . . 10  |-  ( y  =  A  ->  (
y  e.  om  <->  A  e.  om ) )
14 eqeq1 2172 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
15 suceq 4380 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  suc  z  =  suc  x )
1615eqeq2d 2177 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
y  =  suc  z  <->  y  =  suc  x ) )
1716cbvrexv 2693 . . . . . . . . . . . 12  |-  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  y  =  suc  x )
18 eqeq1 2172 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1918rexbidv 2467 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
2017, 19syl5bb 191 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( E. z  e.  om  y  =  suc  z  <->  E. x  e.  om  A  =  suc  x ) )
2114, 20orbi12d 783 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2213, 21bibi12d 234 . . . . . . . . 9  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  <-> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
23 biimp 117 . . . . . . . . 9  |-  ( ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )  -> 
( A  e.  om  ->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
2422, 23syl6bi 162 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  e.  om  <->  ( y  =  (/)  \/  E. z  e.  om  y  =  suc  z ) )  ->  ( A  e. 
om  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) ) )
2511, 12, 24spcimgf 2806 . . . . . . 7  |-  ( A  e.  om  ->  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
2625pm2.43b 52 . . . . . 6  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
27 peano1 4571 . . . . . . . 8  |-  (/)  e.  om
28 eleq1 2229 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
2927, 28mpbiri 167 . . . . . . 7  |-  ( A  =  (/)  ->  A  e. 
om )
30 bj-peano2 13821 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
31 eleq1a 2238 . . . . . . . . . 10  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
3231imp 123 . . . . . . . . 9  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
3330, 32sylan 281 . . . . . . . 8  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
3433rexlimiva 2578 . . . . . . 7  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
3529, 34jaoi 706 . . . . . 6  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
3626, 35impbid1 141 . . . . 5  |-  ( A. y ( y  e. 
om 
<->  ( y  =  (/)  \/ 
E. z  e.  om  y  =  suc  z ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
3710, 36syl6bi 162 . . . 4  |-  ( a  =  om  ->  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) ) )
385, 37mpcom 36 . . 3  |-  ( A. y ( y  e.  a  <->  ( y  =  (/)  \/  E. z  e.  a  y  =  suc  z ) )  -> 
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) ) )
391, 38eximii 1590 . 2  |-  E. a
( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
40 bj-ex 13643 . 2  |-  ( E. a ( A  e. 
om 
<->  ( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) )  ->  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
4139, 40ax-mp 5 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   _Vcvv 2726   (/)c0 3409   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdim 13696  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766  ax-bdsetind 13850  ax-inf2 13858
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator