Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sseq | Unicode version |
Description: If two converse inclusions are characterized each by a formula, then equality is characterized by the conjunction of these formulas. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-sseq.1 | |
bj-sseq.2 |
Ref | Expression |
---|---|
bj-sseq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sseq.1 | . . 3 | |
2 | bj-sseq.2 | . . 3 | |
3 | 1, 2 | anbi12d 470 | . 2 |
4 | eqss 3162 | . 2 | |
5 | 3, 4 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |