Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-elssuniab Unicode version

Theorem bj-elssuniab 11337
Description: Version of elssuni 3676 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-elssuniab.nf  |-  F/_ x A
Assertion
Ref Expression
bj-elssuniab  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  A  C_  U. {
x  |  ph }
) )

Proof of Theorem bj-elssuniab
StepHypRef Expression
1 sbc8g 2845 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )
2 elssuni 3676 . 2  |-  ( A  e.  { x  | 
ph }  ->  A  C_ 
U. { x  | 
ph } )
31, 2syl6bi 161 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  A  C_  U. {
x  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   {cab 2074   F/_wnfc 2215   [.wsbc 2838    C_ wss 2997   U.cuni 3648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2839  df-in 3003  df-ss 3010  df-uni 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator