Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-elssuniab Unicode version

Theorem bj-elssuniab 15731
Description: Version of elssuni 3878 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-elssuniab.nf  |-  F/_ x A
Assertion
Ref Expression
bj-elssuniab  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  A  C_  U. {
x  |  ph }
) )

Proof of Theorem bj-elssuniab
StepHypRef Expression
1 sbc8g 3006 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )
2 elssuni 3878 . 2  |-  ( A  e.  { x  | 
ph }  ->  A  C_ 
U. { x  | 
ph } )
31, 2biimtrdi 163 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  A  C_  U. {
x  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   {cab 2191   F/_wnfc 2335   [.wsbc 2998    C_ wss 3166   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-in 3172  df-ss 3179  df-uni 3851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator