| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sseq | GIF version | ||
| Description: If two converse inclusions are characterized each by a formula, then equality is characterized by the conjunction of these formulas. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-sseq.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ⊆ 𝐵)) |
| bj-sseq.2 | ⊢ (𝜑 → (𝜒 ↔ 𝐵 ⊆ 𝐴)) |
| Ref | Expression |
|---|---|
| bj-sseq | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sseq.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | bj-sseq.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
| 4 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |