![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr4di.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr4di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr4di.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bitrdi 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1737 eueq3dc 2934 sbcel12g 3095 sbceqg 3096 sbcnel12g 3097 reldisj 3498 r19.3rm 3535 eldifpr 3645 eldiftp 3664 rabxp 4696 elrng 4853 iss 4988 eliniseg 5035 fcnvres 5437 dffv3g 5550 funimass4 5607 fndmdif 5663 fneqeql 5666 funimass3 5674 elrnrexdmb 5698 dff4im 5704 fconst4m 5778 elunirn 5809 riota1 5892 riota2df 5894 f1ocnvfv3 5907 eqfnov 6025 caoftrn 6158 mpoxopovel 6294 rntpos 6310 ordgt0ge1 6488 iinerm 6661 erinxp 6663 qliftfun 6671 mapdm0 6717 elfi2 7031 fifo 7039 inl11 7124 ctssdccl 7170 isomnimap 7196 ismkvmap 7213 iswomnimap 7225 omniwomnimkv 7226 pr2nelem 7251 indpi 7402 genpdflem 7567 genpdisj 7583 genpassl 7584 genpassu 7585 ltnqpri 7654 ltpopr 7655 ltexprlemm 7660 ltexprlemdisj 7666 ltexprlemloc 7667 ltrennb 7914 letri3 8100 letr 8102 ltneg 8481 leneg 8484 reapltxor 8608 apsym 8625 suprnubex 8972 suprleubex 8973 elnnnn0 9283 zrevaddcl 9367 znnsub 9368 znn0sub 9382 prime 9416 eluz2 9598 eluz2b1 9666 nn01to3 9682 qrevaddcl 9709 xrletri3 9870 xrletr 9874 iccid 9991 elicopnf 10035 fzsplit2 10116 fzsn 10132 fzpr 10143 uzsplit 10158 fvinim0ffz 10308 lt2sqi 10698 le2sqi 10699 abs00ap 11206 iooinsup 11420 mertenslem2 11679 fprod2dlemstep 11765 gcddiv 12156 algcvgblem 12187 isprm3 12256 phisum 12378 imasgrp2 13180 issubg 13243 resgrpisgrp 13265 eqgval 13293 imasrng 13452 ring1 13555 imasring 13560 crngunit 13607 lssle0 13868 lssats2 13910 zndvds 14137 znleval 14141 znleval2 14142 eltg2b 14222 discld 14304 opnssneib 14324 restbasg 14336 ssidcn 14378 cnptoprest2 14408 lmss 14414 txrest 14444 txlm 14447 imasnopn 14467 bldisj 14569 xmeter 14604 bl2ioo 14710 limcdifap 14816 bj-sseq 15284 nnti 15485 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |