| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 |
|
| bitr4di.2 |
|
| Ref | Expression |
|---|---|
| bitr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 |
. 2
| |
| 2 | bitr4di.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1386 3biant1d 1389 equsalh 1772 eueq3dc 2977 sbcel12g 3139 sbceqg 3140 sbcnel12g 3141 reldisj 3543 r19.3rm 3580 eldifpr 3693 eldiftp 3712 rabxp 4755 elrng 4912 iss 5050 eliniseg 5097 fcnvres 5508 dffv3g 5622 funimass4 5683 fndmdif 5739 fneqeql 5742 funimass3 5750 elrnrexdmb 5774 dff4im 5780 fconst4m 5858 elunirn 5889 riota1 5973 riota2df 5975 f1ocnvfv3 5989 eqfnov 6110 caoftrn 6249 mpoxopovel 6385 rntpos 6401 ordgt0ge1 6579 iinerm 6752 erinxp 6754 qliftfun 6762 mapdm0 6808 elfi2 7135 fifo 7143 inl11 7228 ctssdccl 7274 isomnimap 7300 ismkvmap 7317 iswomnimap 7329 omniwomnimkv 7330 pr2nelem 7360 indpi 7525 genpdflem 7690 genpdisj 7706 genpassl 7707 genpassu 7708 ltnqpri 7777 ltpopr 7778 ltexprlemm 7783 ltexprlemdisj 7789 ltexprlemloc 7790 ltrennb 8037 letri3 8223 letr 8225 ltneg 8605 leneg 8608 reapltxor 8732 apsym 8749 suprnubex 9096 suprleubex 9097 elnnnn0 9408 zrevaddcl 9493 znnsub 9494 znn0sub 9508 prime 9542 eluz2 9724 eluz2b1 9792 nn01to3 9808 qrevaddcl 9835 xrletri3 9996 xrletr 10000 iccid 10117 elicopnf 10161 fzsplit2 10242 fzsn 10258 fzpr 10269 uzsplit 10284 fvinim0ffz 10442 lt2sqi 10844 le2sqi 10845 ccatlcan 11245 ccatrcan 11246 abs00ap 11568 iooinsup 11783 mertenslem2 12042 fprod2dlemstep 12128 gcddiv 12535 algcvgblem 12566 isprm3 12635 dvdsfi 12756 imasmnd2 13480 imasgrp2 13642 issubg 13705 resgrpisgrp 13727 eqgval 13755 imasrng 13914 ring1 14017 imasring 14022 crngunit 14069 lssle0 14330 lssats2 14372 zndvds 14607 znleval 14611 znleval2 14612 eltg2b 14722 discld 14804 opnssneib 14824 restbasg 14836 ssidcn 14878 cnptoprest2 14908 lmss 14914 txrest 14944 txlm 14947 imasnopn 14967 bldisj 15069 xmeter 15104 bl2ioo 15218 limcdifap 15330 bj-sseq 16114 nnti 16315 2omap 16318 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |