| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 |
|
| bitr4di.2 |
|
| Ref | Expression |
|---|---|
| bitr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 |
. 2
| |
| 2 | bitr4di.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1740 eueq3dc 2938 sbcel12g 3099 sbceqg 3100 sbcnel12g 3101 reldisj 3503 r19.3rm 3540 eldifpr 3650 eldiftp 3669 rabxp 4701 elrng 4858 iss 4993 eliniseg 5040 fcnvres 5444 dffv3g 5557 funimass4 5614 fndmdif 5670 fneqeql 5673 funimass3 5681 elrnrexdmb 5705 dff4im 5711 fconst4m 5785 elunirn 5816 riota1 5899 riota2df 5901 f1ocnvfv3 5914 eqfnov 6033 caoftrn 6172 mpoxopovel 6308 rntpos 6324 ordgt0ge1 6502 iinerm 6675 erinxp 6677 qliftfun 6685 mapdm0 6731 elfi2 7047 fifo 7055 inl11 7140 ctssdccl 7186 isomnimap 7212 ismkvmap 7229 iswomnimap 7241 omniwomnimkv 7242 pr2nelem 7270 indpi 7426 genpdflem 7591 genpdisj 7607 genpassl 7608 genpassu 7609 ltnqpri 7678 ltpopr 7679 ltexprlemm 7684 ltexprlemdisj 7690 ltexprlemloc 7691 ltrennb 7938 letri3 8124 letr 8126 ltneg 8506 leneg 8509 reapltxor 8633 apsym 8650 suprnubex 8997 suprleubex 8998 elnnnn0 9309 zrevaddcl 9393 znnsub 9394 znn0sub 9408 prime 9442 eluz2 9624 eluz2b1 9692 nn01to3 9708 qrevaddcl 9735 xrletri3 9896 xrletr 9900 iccid 10017 elicopnf 10061 fzsplit2 10142 fzsn 10158 fzpr 10169 uzsplit 10184 fvinim0ffz 10334 lt2sqi 10736 le2sqi 10737 abs00ap 11244 iooinsup 11459 mertenslem2 11718 fprod2dlemstep 11804 gcddiv 12211 algcvgblem 12242 isprm3 12311 dvdsfi 12432 imasmnd2 13154 imasgrp2 13316 issubg 13379 resgrpisgrp 13401 eqgval 13429 imasrng 13588 ring1 13691 imasring 13696 crngunit 13743 lssle0 14004 lssats2 14046 zndvds 14281 znleval 14285 znleval2 14286 eltg2b 14374 discld 14456 opnssneib 14476 restbasg 14488 ssidcn 14530 cnptoprest2 14560 lmss 14566 txrest 14596 txlm 14599 imasnopn 14619 bldisj 14721 xmeter 14756 bl2ioo 14870 limcdifap 14982 bj-sseq 15522 nnti 15723 2omap 15726 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |