![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr4di.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr4di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr4di.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bitrdi 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1737 eueq3dc 2935 sbcel12g 3096 sbceqg 3097 sbcnel12g 3098 reldisj 3499 r19.3rm 3536 eldifpr 3646 eldiftp 3665 rabxp 4697 elrng 4854 iss 4989 eliniseg 5036 fcnvres 5438 dffv3g 5551 funimass4 5608 fndmdif 5664 fneqeql 5667 funimass3 5675 elrnrexdmb 5699 dff4im 5705 fconst4m 5779 elunirn 5810 riota1 5893 riota2df 5895 f1ocnvfv3 5908 eqfnov 6026 caoftrn 6160 mpoxopovel 6296 rntpos 6312 ordgt0ge1 6490 iinerm 6663 erinxp 6665 qliftfun 6673 mapdm0 6719 elfi2 7033 fifo 7041 inl11 7126 ctssdccl 7172 isomnimap 7198 ismkvmap 7215 iswomnimap 7227 omniwomnimkv 7228 pr2nelem 7253 indpi 7404 genpdflem 7569 genpdisj 7585 genpassl 7586 genpassu 7587 ltnqpri 7656 ltpopr 7657 ltexprlemm 7662 ltexprlemdisj 7668 ltexprlemloc 7669 ltrennb 7916 letri3 8102 letr 8104 ltneg 8483 leneg 8486 reapltxor 8610 apsym 8627 suprnubex 8974 suprleubex 8975 elnnnn0 9286 zrevaddcl 9370 znnsub 9371 znn0sub 9385 prime 9419 eluz2 9601 eluz2b1 9669 nn01to3 9685 qrevaddcl 9712 xrletri3 9873 xrletr 9877 iccid 9994 elicopnf 10038 fzsplit2 10119 fzsn 10135 fzpr 10146 uzsplit 10161 fvinim0ffz 10311 lt2sqi 10701 le2sqi 10702 abs00ap 11209 iooinsup 11423 mertenslem2 11682 fprod2dlemstep 11768 gcddiv 12159 algcvgblem 12190 isprm3 12259 phisum 12381 imasgrp2 13183 issubg 13246 resgrpisgrp 13268 eqgval 13296 imasrng 13455 ring1 13558 imasring 13563 crngunit 13610 lssle0 13871 lssats2 13913 zndvds 14148 znleval 14152 znleval2 14153 eltg2b 14233 discld 14315 opnssneib 14335 restbasg 14347 ssidcn 14389 cnptoprest2 14419 lmss 14425 txrest 14455 txlm 14458 imasnopn 14478 bldisj 14580 xmeter 14615 bl2ioo 14729 limcdifap 14841 bj-sseq 15354 nnti 15555 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |