| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| bitr4di.1 | 
 | 
| bitr4di.2 | 
 | 
| Ref | Expression | 
|---|---|
| bitr4di | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr4di.1 | 
. 2
 | |
| 2 | bitr4di.2 | 
. . 3
 | |
| 3 | 2 | bicomi 132 | 
. 2
 | 
| 4 | 1, 3 | bitrdi 196 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1740 eueq3dc 2938 sbcel12g 3099 sbceqg 3100 sbcnel12g 3101 reldisj 3502 r19.3rm 3539 eldifpr 3649 eldiftp 3668 rabxp 4700 elrng 4857 iss 4992 eliniseg 5039 fcnvres 5441 dffv3g 5554 funimass4 5611 fndmdif 5667 fneqeql 5670 funimass3 5678 elrnrexdmb 5702 dff4im 5708 fconst4m 5782 elunirn 5813 riota1 5896 riota2df 5898 f1ocnvfv3 5911 eqfnov 6029 caoftrn 6163 mpoxopovel 6299 rntpos 6315 ordgt0ge1 6493 iinerm 6666 erinxp 6668 qliftfun 6676 mapdm0 6722 elfi2 7038 fifo 7046 inl11 7131 ctssdccl 7177 isomnimap 7203 ismkvmap 7220 iswomnimap 7232 omniwomnimkv 7233 pr2nelem 7258 indpi 7409 genpdflem 7574 genpdisj 7590 genpassl 7591 genpassu 7592 ltnqpri 7661 ltpopr 7662 ltexprlemm 7667 ltexprlemdisj 7673 ltexprlemloc 7674 ltrennb 7921 letri3 8107 letr 8109 ltneg 8489 leneg 8492 reapltxor 8616 apsym 8633 suprnubex 8980 suprleubex 8981 elnnnn0 9292 zrevaddcl 9376 znnsub 9377 znn0sub 9391 prime 9425 eluz2 9607 eluz2b1 9675 nn01to3 9691 qrevaddcl 9718 xrletri3 9879 xrletr 9883 iccid 10000 elicopnf 10044 fzsplit2 10125 fzsn 10141 fzpr 10152 uzsplit 10167 fvinim0ffz 10317 lt2sqi 10719 le2sqi 10720 abs00ap 11227 iooinsup 11442 mertenslem2 11701 fprod2dlemstep 11787 gcddiv 12186 algcvgblem 12217 isprm3 12286 dvdsfi 12407 imasgrp2 13240 issubg 13303 resgrpisgrp 13325 eqgval 13353 imasrng 13512 ring1 13615 imasring 13620 crngunit 13667 lssle0 13928 lssats2 13970 zndvds 14205 znleval 14209 znleval2 14210 eltg2b 14290 discld 14372 opnssneib 14392 restbasg 14404 ssidcn 14446 cnptoprest2 14476 lmss 14482 txrest 14512 txlm 14515 imasnopn 14535 bldisj 14637 xmeter 14672 bl2ioo 14786 limcdifap 14898 bj-sseq 15438 nnti 15639 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |