| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 |
|
| bitr4di.2 |
|
| Ref | Expression |
|---|---|
| bitr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 |
. 2
| |
| 2 | bitr4di.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1364 3biant1d 1367 equsalh 1750 eueq3dc 2951 sbcel12g 3112 sbceqg 3113 sbcnel12g 3114 reldisj 3516 r19.3rm 3553 eldifpr 3665 eldiftp 3684 rabxp 4720 elrng 4877 iss 5014 eliniseg 5061 fcnvres 5471 dffv3g 5585 funimass4 5642 fndmdif 5698 fneqeql 5701 funimass3 5709 elrnrexdmb 5733 dff4im 5739 fconst4m 5817 elunirn 5848 riota1 5931 riota2df 5933 f1ocnvfv3 5946 eqfnov 6065 caoftrn 6204 mpoxopovel 6340 rntpos 6356 ordgt0ge1 6534 iinerm 6707 erinxp 6709 qliftfun 6717 mapdm0 6763 elfi2 7089 fifo 7097 inl11 7182 ctssdccl 7228 isomnimap 7254 ismkvmap 7271 iswomnimap 7283 omniwomnimkv 7284 pr2nelem 7314 indpi 7475 genpdflem 7640 genpdisj 7656 genpassl 7657 genpassu 7658 ltnqpri 7727 ltpopr 7728 ltexprlemm 7733 ltexprlemdisj 7739 ltexprlemloc 7740 ltrennb 7987 letri3 8173 letr 8175 ltneg 8555 leneg 8558 reapltxor 8682 apsym 8699 suprnubex 9046 suprleubex 9047 elnnnn0 9358 zrevaddcl 9443 znnsub 9444 znn0sub 9458 prime 9492 eluz2 9674 eluz2b1 9742 nn01to3 9758 qrevaddcl 9785 xrletri3 9946 xrletr 9950 iccid 10067 elicopnf 10111 fzsplit2 10192 fzsn 10208 fzpr 10219 uzsplit 10234 fvinim0ffz 10392 lt2sqi 10794 le2sqi 10795 ccatlcan 11194 ccatrcan 11195 abs00ap 11448 iooinsup 11663 mertenslem2 11922 fprod2dlemstep 12008 gcddiv 12415 algcvgblem 12446 isprm3 12515 dvdsfi 12636 imasmnd2 13359 imasgrp2 13521 issubg 13584 resgrpisgrp 13606 eqgval 13634 imasrng 13793 ring1 13896 imasring 13901 crngunit 13948 lssle0 14209 lssats2 14251 zndvds 14486 znleval 14490 znleval2 14491 eltg2b 14601 discld 14683 opnssneib 14703 restbasg 14715 ssidcn 14757 cnptoprest2 14787 lmss 14793 txrest 14823 txlm 14826 imasnopn 14846 bldisj 14948 xmeter 14983 bl2ioo 15097 limcdifap 15209 bj-sseq 15867 nnti 16068 2omap 16071 pw1nct 16081 |
| Copyright terms: Public domain | W3C validator |