| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 |
|
| bitr4di.2 |
|
| Ref | Expression |
|---|---|
| bitr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 |
. 2
| |
| 2 | bitr4di.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1363 3biant1d 1366 equsalh 1748 eueq3dc 2946 sbcel12g 3107 sbceqg 3108 sbcnel12g 3109 reldisj 3511 r19.3rm 3548 eldifpr 3659 eldiftp 3678 rabxp 4710 elrng 4867 iss 5002 eliniseg 5049 fcnvres 5453 dffv3g 5566 funimass4 5623 fndmdif 5679 fneqeql 5682 funimass3 5690 elrnrexdmb 5714 dff4im 5720 fconst4m 5794 elunirn 5825 riota1 5908 riota2df 5910 f1ocnvfv3 5923 eqfnov 6042 caoftrn 6181 mpoxopovel 6317 rntpos 6333 ordgt0ge1 6511 iinerm 6684 erinxp 6686 qliftfun 6694 mapdm0 6740 elfi2 7056 fifo 7064 inl11 7149 ctssdccl 7195 isomnimap 7221 ismkvmap 7238 iswomnimap 7250 omniwomnimkv 7251 pr2nelem 7281 indpi 7437 genpdflem 7602 genpdisj 7618 genpassl 7619 genpassu 7620 ltnqpri 7689 ltpopr 7690 ltexprlemm 7695 ltexprlemdisj 7701 ltexprlemloc 7702 ltrennb 7949 letri3 8135 letr 8137 ltneg 8517 leneg 8520 reapltxor 8644 apsym 8661 suprnubex 9008 suprleubex 9009 elnnnn0 9320 zrevaddcl 9405 znnsub 9406 znn0sub 9420 prime 9454 eluz2 9636 eluz2b1 9704 nn01to3 9720 qrevaddcl 9747 xrletri3 9908 xrletr 9912 iccid 10029 elicopnf 10073 fzsplit2 10154 fzsn 10170 fzpr 10181 uzsplit 10196 fvinim0ffz 10351 lt2sqi 10753 le2sqi 10754 abs00ap 11292 iooinsup 11507 mertenslem2 11766 fprod2dlemstep 11852 gcddiv 12259 algcvgblem 12290 isprm3 12359 dvdsfi 12480 imasmnd2 13202 imasgrp2 13364 issubg 13427 resgrpisgrp 13449 eqgval 13477 imasrng 13636 ring1 13739 imasring 13744 crngunit 13791 lssle0 14052 lssats2 14094 zndvds 14329 znleval 14333 znleval2 14334 eltg2b 14444 discld 14526 opnssneib 14546 restbasg 14558 ssidcn 14600 cnptoprest2 14630 lmss 14636 txrest 14666 txlm 14669 imasnopn 14689 bldisj 14791 xmeter 14826 bl2ioo 14940 limcdifap 15052 bj-sseq 15592 nnti 15793 2omap 15796 pw1nct 15804 |
| Copyright terms: Public domain | W3C validator |