ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12d Unicode version

Theorem breqan12d 4061
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12d  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12d
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . 2  |-  ( ps 
->  C  =  D
)
3 breq12 4050 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
41, 2, 3syl2an 289 1  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  breqan12rd  4062  sosng  4749  isoresbr  5880  isoid  5881  isores3  5886  isoini2  5890  ofrfval  6169  oviec  6730  enqbreq2  7472  ltresr2  7955  axpre-ltadd  8001  leltadd  8522  xltneg  9960  lt2sq  10760  le2sq  10761  cnreim  11322  sqrtle  11380  sqrtlt  11381  absext  11407  reefiso  15282  logltb  15379  lgsquadlem3  15589
  Copyright terms: Public domain W3C validator