Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqan12d | Unicode version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | |
breqan12i.2 |
Ref | Expression |
---|---|
breqan12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 | |
2 | breqan12i.2 | . 2 | |
3 | breq12 3992 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: breqan12rd 4004 sosng 4682 isoresbr 5785 isoid 5786 isores3 5791 isoini2 5795 ofrfval 6066 oviec 6615 enqbreq2 7306 ltresr2 7789 axpre-ltadd 7835 leltadd 8353 xltneg 9780 lt2sq 10536 le2sq 10537 cnreim 10929 sqrtle 10987 sqrtlt 10988 absext 11014 reefiso 13413 logltb 13510 |
Copyright terms: Public domain | W3C validator |