ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12d Unicode version

Theorem breqan12d 4005
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12d  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12d
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . 2  |-  ( ps 
->  C  =  D
)
3 breq12 3994 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
41, 2, 3syl2an 287 1  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  breqan12rd  4006  sosng  4684  isoresbr  5788  isoid  5789  isores3  5794  isoini2  5798  ofrfval  6069  oviec  6619  enqbreq2  7319  ltresr2  7802  axpre-ltadd  7848  leltadd  8366  xltneg  9793  lt2sq  10549  le2sq  10550  cnreim  10942  sqrtle  11000  sqrtlt  11001  absext  11027  reefiso  13492  logltb  13589
  Copyright terms: Public domain W3C validator