| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqan12d | Unicode version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1d.1 |
|
| breqan12i.2 |
|
| Ref | Expression |
|---|---|
| breqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 |
. 2
| |
| 2 | breqan12i.2 |
. 2
| |
| 3 | breq12 4087 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: breqan12rd 4099 sosng 4789 isoresbr 5926 isoid 5927 isores3 5932 isoini2 5936 ofrfval 6217 oviec 6778 enqbreq2 7532 ltresr2 8015 axpre-ltadd 8061 leltadd 8582 xltneg 10020 lt2sq 10822 le2sq 10823 cnreim 11475 sqrtle 11533 sqrtlt 11534 absext 11560 reefiso 15436 logltb 15533 lgsquadlem3 15743 |
| Copyright terms: Public domain | W3C validator |