ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12d Unicode version

Theorem breqan12d 4098
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12d  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12d
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . 2  |-  ( ps 
->  C  =  D
)
3 breq12 4087 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
41, 2, 3syl2an 289 1  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   class class class wbr 4082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083
This theorem is referenced by:  breqan12rd  4099  sosng  4789  isoresbr  5926  isoid  5927  isores3  5932  isoini2  5936  ofrfval  6217  oviec  6778  enqbreq2  7532  ltresr2  8015  axpre-ltadd  8061  leltadd  8582  xltneg  10020  lt2sq  10822  le2sq  10823  cnreim  11475  sqrtle  11533  sqrtlt  11534  absext  11560  reefiso  15436  logltb  15533  lgsquadlem3  15743
  Copyright terms: Public domain W3C validator