| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-br | Unicode version | ||
| Description: Define a general binary
relation. Note that the syntax is simply three
class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29
generalized to arbitrary classes. This definition of relations is
well-defined, although not very meaningful, when classes |
| Ref | Expression |
|---|---|
| df-br |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | cR |
. . 3
| |
| 4 | 1, 2, 3 | wbr 4034 |
. 2
|
| 5 | 1, 2 | cop 3626 |
. . 3
|
| 6 | 5, 3 | wcel 2167 |
. 2
|
| 7 | 4, 6 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: breq 4036 breq1 4037 breq2 4038 ssbrd 4077 nfbrd 4079 br0 4082 brne0 4083 brm 4084 brun 4085 brin 4086 brdif 4087 opabss 4098 brabsb 4296 brabga 4299 epelg 4326 pofun 4348 brxp 4695 brab2a 4717 brab2ga 4739 eqbrriv 4759 eqbrrdv 4761 eqbrrdiv 4762 opeliunxp2 4807 opelco2g 4835 opelco 4839 cnvss 4840 elcnv2 4845 opelcnvg 4847 brcnvg 4848 dfdm3 4854 dfrn3 4856 elrng 4858 eldm2g 4863 breldm 4871 dmopab 4878 opelrng 4899 opelrn 4901 elrn 4910 rnopab 4914 brres 4953 brresg 4955 resieq 4957 opelresi 4958 resiexg 4992 iss 4993 dfres2 4999 restidsing 5003 dfima3 5013 elima3 5017 imai 5026 elimasn 5037 eliniseg 5040 cotr 5052 issref 5053 cnvsym 5054 intasym 5055 asymref 5056 intirr 5057 codir 5059 qfto 5060 poirr2 5063 dmsnm 5136 coiun 5180 co02 5184 coi1 5186 dffun4 5270 dffun4f 5275 funeu2 5285 funopab 5294 funco 5299 funcnvsn 5304 isarep1 5345 fnop 5364 fneu2 5366 brprcneu 5554 dffv3g 5557 tz6.12 5589 nfvres 5595 0fv 5597 funopfv 5603 fnopfvb 5605 fvmptss2 5639 funfvbrb 5678 dff3im 5710 dff4im 5711 f1ompt 5716 idref 5806 foeqcnvco 5840 f1eqcocnv 5841 fliftel 5843 fliftel1 5844 fliftcnv 5845 f1oiso 5876 ovprc 5961 brabvv 5972 1st2ndbr 6251 xporderlem 6298 opeliunxp2f 6305 rbropapd 6309 ottposg 6322 dftpos3 6329 dftpos4 6330 tposoprab 6347 tfrlem7 6384 tfrexlem 6401 ercnv 6622 brdifun 6628 swoord1 6630 swoord2 6631 0er 6635 elecg 6641 iinerm 6675 brecop 6693 idssen 6845 xpcomco 6894 netap 7337 2omotaplemap 7340 exmidapne 7343 ltdfpr 7590 xrlenlt 8108 aprcl 8690 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 climcau 11529 divides 11971 isstructim 12717 isstructr 12718 imasaddfnlemg 13016 subrgdvds 13867 aprval 13914 lmrcl 14511 lmff 14569 xmeterval 14755 eldvap 15002 dvef 15047 |
| Copyright terms: Public domain | W3C validator |