![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-br | Unicode version |
Description: Define a general binary
relation. Note that the syntax is simply three
class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29
generalized to arbitrary classes. This definition of relations is
well-defined, although not very meaningful, when classes ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-br |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | cR |
. . 3
![]() ![]() | |
4 | 1, 2, 3 | wbr 4030 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 2 | cop 3622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5, 3 | wcel 2164 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | wb 105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: breq 4032 breq1 4033 breq2 4034 ssbrd 4073 nfbrd 4075 br0 4078 brne0 4079 brm 4080 brun 4081 brin 4082 brdif 4083 opabss 4094 brabsb 4292 brabga 4295 epelg 4322 pofun 4344 brxp 4691 brab2a 4713 brab2ga 4735 eqbrriv 4755 eqbrrdv 4757 eqbrrdiv 4758 opeliunxp2 4803 opelco2g 4831 opelco 4835 cnvss 4836 elcnv2 4841 opelcnvg 4843 brcnvg 4844 dfdm3 4850 dfrn3 4852 elrng 4854 eldm2g 4859 breldm 4867 dmopab 4874 opelrng 4895 opelrn 4897 elrn 4906 rnopab 4910 brres 4949 brresg 4951 resieq 4953 opelresi 4954 resiexg 4988 iss 4989 dfres2 4995 restidsing 4999 dfima3 5009 elima3 5013 imai 5022 elimasn 5033 eliniseg 5036 cotr 5048 issref 5049 cnvsym 5050 intasym 5051 asymref 5052 intirr 5053 codir 5055 qfto 5056 poirr2 5059 dmsnm 5132 coiun 5176 co02 5180 coi1 5182 dffun4 5266 dffun4f 5271 funeu2 5281 funopab 5290 funco 5295 funcnvsn 5300 isarep1 5341 fnop 5358 fneu2 5360 brprcneu 5548 dffv3g 5551 tz6.12 5583 nfvres 5589 0fv 5591 funopfv 5597 fnopfvb 5599 fvmptss2 5633 funfvbrb 5672 dff3im 5704 dff4im 5705 f1ompt 5710 idref 5800 foeqcnvco 5834 f1eqcocnv 5835 fliftel 5837 fliftel1 5838 fliftcnv 5839 f1oiso 5870 ovprc 5954 brabvv 5965 1st2ndbr 6239 xporderlem 6286 opeliunxp2f 6293 rbropapd 6297 ottposg 6310 dftpos3 6317 dftpos4 6318 tposoprab 6335 tfrlem7 6372 tfrexlem 6389 ercnv 6610 brdifun 6616 swoord1 6618 swoord2 6619 0er 6623 elecg 6629 iinerm 6663 brecop 6681 idssen 6833 xpcomco 6882 netap 7316 2omotaplemap 7319 exmidapne 7322 ltdfpr 7568 xrlenlt 8086 aprcl 8667 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 climcau 11493 divides 11935 isstructim 12635 isstructr 12636 imasaddfnlemg 12900 subrgdvds 13734 aprval 13781 lmrcl 14370 lmff 14428 xmeterval 14614 eldvap 14861 dvef 14906 |
Copyright terms: Public domain | W3C validator |