![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-br | Unicode version |
Description: Define a general binary
relation. Note that the syntax is simply three
class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29
generalized to arbitrary classes. This definition of relations is
well-defined, although not very meaningful, when classes ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-br |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | cR |
. . 3
![]() ![]() | |
4 | 1, 2, 3 | wbr 4005 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 2 | cop 3597 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5, 3 | wcel 2148 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | wb 105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: breq 4007 breq1 4008 breq2 4009 ssbrd 4048 nfbrd 4050 br0 4053 brne0 4054 brm 4055 brun 4056 brin 4057 brdif 4058 opabss 4069 brabsb 4263 brabga 4266 epelg 4292 pofun 4314 brxp 4659 brab2a 4681 brab2ga 4703 eqbrriv 4723 eqbrrdv 4725 eqbrrdiv 4726 opeliunxp2 4769 opelco2g 4797 opelco 4801 cnvss 4802 elcnv2 4807 opelcnvg 4809 brcnvg 4810 dfdm3 4816 dfrn3 4818 elrng 4820 eldm2g 4825 breldm 4833 dmopab 4840 opelrng 4861 opelrn 4863 elrn 4872 rnopab 4876 brres 4915 brresg 4917 resieq 4919 opelresi 4920 resiexg 4954 iss 4955 dfres2 4961 restidsing 4965 dfima3 4975 elima3 4979 imai 4986 elimasn 4997 eliniseg 5000 cotr 5012 issref 5013 cnvsym 5014 intasym 5015 asymref 5016 intirr 5017 codir 5019 qfto 5020 poirr2 5023 dmsnm 5096 coiun 5140 co02 5144 coi1 5146 dffun4 5229 dffun4f 5234 funeu2 5244 funopab 5253 funco 5258 funcnvsn 5263 isarep1 5304 fnop 5321 fneu2 5323 brprcneu 5510 dffv3g 5513 tz6.12 5545 nfvres 5550 0fv 5552 funopfv 5557 fnopfvb 5559 fvmptss2 5593 funfvbrb 5631 dff3im 5663 dff4im 5664 f1ompt 5669 idref 5759 foeqcnvco 5793 f1eqcocnv 5794 fliftel 5796 fliftel1 5797 fliftcnv 5798 f1oiso 5829 ovprc 5912 brabvv 5923 1st2ndbr 6187 xporderlem 6234 opeliunxp2f 6241 rbropapd 6245 ottposg 6258 dftpos3 6265 dftpos4 6266 tposoprab 6283 tfrlem7 6320 tfrexlem 6337 ercnv 6558 brdifun 6564 swoord1 6566 swoord2 6567 0er 6571 elecg 6575 iinerm 6609 brecop 6627 idssen 6779 xpcomco 6828 netap 7255 2omotaplemap 7258 exmidapne 7261 ltdfpr 7507 xrlenlt 8024 aprcl 8605 frecuzrdgtcl 10414 frecuzrdgfunlem 10421 climcau 11357 divides 11798 isstructim 12478 isstructr 12479 imasaddfnlemg 12740 subrgdvds 13361 aprval 13377 lmrcl 13730 lmff 13788 xmeterval 13974 eldvap 14190 dvef 14227 |
Copyright terms: Public domain | W3C validator |