Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-br | Unicode version |
Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes and/or are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when is a proper class (see for example iprc 4879). (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
df-br |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cB | . . 3 | |
3 | cR | . . 3 | |
4 | 1, 2, 3 | wbr 3989 | . 2 |
5 | 1, 2 | cop 3586 | . . 3 |
6 | 5, 3 | wcel 2141 | . 2 |
7 | 4, 6 | wb 104 | 1 |
Colors of variables: wff set class |
This definition is referenced by: breq 3991 breq1 3992 breq2 3993 ssbrd 4032 nfbrd 4034 br0 4037 brne0 4038 brm 4039 brun 4040 brin 4041 brdif 4042 opabss 4053 brabsb 4246 brabga 4249 epelg 4275 pofun 4297 brxp 4642 brab2a 4664 brab2ga 4686 eqbrriv 4706 eqbrrdv 4708 eqbrrdiv 4709 opeliunxp2 4751 opelco2g 4779 opelco 4783 cnvss 4784 elcnv2 4789 opelcnvg 4791 brcnvg 4792 dfdm3 4798 dfrn3 4800 elrng 4802 eldm2g 4807 breldm 4815 dmopab 4822 opelrng 4843 opelrn 4845 elrn 4854 rnopab 4858 brres 4897 brresg 4899 resieq 4901 opelresi 4902 resiexg 4936 iss 4937 dfres2 4943 dfima3 4956 elima3 4960 imai 4967 elimasn 4978 eliniseg 4981 cotr 4992 issref 4993 cnvsym 4994 intasym 4995 asymref 4996 intirr 4997 codir 4999 qfto 5000 poirr2 5003 dmsnm 5076 coiun 5120 co02 5124 coi1 5126 dffun4 5209 dffun4f 5214 funeu2 5224 funopab 5233 funco 5238 funcnvsn 5243 isarep1 5284 fnop 5301 fneu2 5303 brprcneu 5489 dffv3g 5492 tz6.12 5524 nfvres 5529 0fv 5531 funopfv 5536 fnopfvb 5538 fvmptss2 5571 funfvbrb 5609 dff3im 5641 dff4im 5642 f1ompt 5647 idref 5736 foeqcnvco 5769 f1eqcocnv 5770 fliftel 5772 fliftel1 5773 fliftcnv 5774 f1oiso 5805 ovprc 5888 brabvv 5899 1st2ndbr 6163 xporderlem 6210 opeliunxp2f 6217 rbropapd 6221 ottposg 6234 dftpos3 6241 dftpos4 6242 tposoprab 6259 tfrlem7 6296 tfrexlem 6313 ercnv 6534 brdifun 6540 swoord1 6542 swoord2 6543 0er 6547 elecg 6551 iinerm 6585 brecop 6603 idssen 6755 xpcomco 6804 ltdfpr 7468 xrlenlt 7984 aprcl 8565 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 climcau 11310 divides 11751 isstructim 12430 isstructr 12431 lmrcl 12985 lmff 13043 xmeterval 13229 eldvap 13445 dvef 13482 |
Copyright terms: Public domain | W3C validator |