Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-br | Unicode version |
Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes and/or are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when is a proper class (see for example iprc 4853). (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
df-br |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cB | . . 3 | |
3 | cR | . . 3 | |
4 | 1, 2, 3 | wbr 3965 | . 2 |
5 | 1, 2 | cop 3563 | . . 3 |
6 | 5, 3 | wcel 2128 | . 2 |
7 | 4, 6 | wb 104 | 1 |
Colors of variables: wff set class |
This definition is referenced by: breq 3967 breq1 3968 breq2 3969 ssbrd 4007 nfbrd 4009 br0 4012 brne0 4013 brm 4014 brun 4015 brin 4016 brdif 4017 opabss 4028 brabsb 4221 brabga 4224 epelg 4250 pofun 4272 brxp 4616 brab2a 4638 brab2ga 4660 eqbrriv 4680 eqbrrdv 4682 eqbrrdiv 4683 opeliunxp2 4725 opelco2g 4753 opelco 4757 cnvss 4758 elcnv2 4763 opelcnvg 4765 brcnvg 4766 dfdm3 4772 dfrn3 4774 elrng 4776 eldm2g 4781 breldm 4789 dmopab 4796 opelrng 4817 opelrn 4819 elrn 4828 rnopab 4832 brres 4871 brresg 4873 resieq 4875 opelresi 4876 resiexg 4910 iss 4911 dfres2 4917 dfima3 4930 elima3 4934 imai 4941 elimasn 4952 eliniseg 4955 cotr 4966 issref 4967 cnvsym 4968 intasym 4969 asymref 4970 intirr 4971 codir 4973 qfto 4974 poirr2 4977 dmsnm 5050 coiun 5094 co02 5098 coi1 5100 dffun4 5180 dffun4f 5185 funeu2 5195 funopab 5204 funco 5209 funcnvsn 5214 isarep1 5255 fnop 5272 fneu2 5274 brprcneu 5460 dffv3g 5463 tz6.12 5495 nfvres 5500 0fv 5502 funopfv 5507 fnopfvb 5509 fvmptss2 5542 funfvbrb 5579 dff3im 5611 dff4im 5612 f1ompt 5617 idref 5704 foeqcnvco 5737 f1eqcocnv 5738 fliftel 5740 fliftel1 5741 fliftcnv 5742 f1oiso 5773 ovprc 5853 brabvv 5864 1st2ndbr 6129 xporderlem 6175 opeliunxp2f 6182 rbropapd 6186 ottposg 6199 dftpos3 6206 dftpos4 6207 tposoprab 6224 tfrlem7 6261 tfrexlem 6278 ercnv 6498 brdifun 6504 swoord1 6506 swoord2 6507 0er 6511 elecg 6515 iinerm 6549 brecop 6567 idssen 6719 xpcomco 6768 ltdfpr 7420 xrlenlt 7936 aprcl 8515 frecuzrdgtcl 10304 frecuzrdgfunlem 10311 climcau 11237 divides 11678 isstructim 12175 isstructr 12176 lmrcl 12562 lmff 12620 xmeterval 12806 eldvap 13022 dvef 13059 |
Copyright terms: Public domain | W3C validator |