| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-br | Unicode version | ||
| Description: Define a general binary
relation. Note that the syntax is simply three
class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29
generalized to arbitrary classes. This definition of relations is
well-defined, although not very meaningful, when classes |
| Ref | Expression |
|---|---|
| df-br |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | cR |
. . 3
| |
| 4 | 1, 2, 3 | wbr 4045 |
. 2
|
| 5 | 1, 2 | cop 3636 |
. . 3
|
| 6 | 5, 3 | wcel 2176 |
. 2
|
| 7 | 4, 6 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: breq 4047 breq1 4048 breq2 4049 ssbrd 4088 nfbrd 4090 br0 4093 brne0 4094 brm 4095 brun 4096 brin 4097 brdif 4098 opabss 4109 brabsb 4308 brabga 4311 epelg 4338 pofun 4360 brxp 4707 brab2a 4729 brab2ga 4751 eqbrriv 4771 eqbrrdv 4773 eqbrrdiv 4774 opeliunxp2 4819 opelco2g 4847 opelco 4851 cnvss 4852 elcnv2 4857 opelcnvg 4859 brcnvg 4860 dfdm3 4866 dfrn3 4868 elrng 4870 eldm2g 4875 breldm 4883 dmopab 4890 opelrng 4911 opelrn 4913 elrn 4922 rnopab 4926 brres 4966 brresg 4968 resieq 4970 opelresi 4971 resiexg 5005 iss 5006 dfres2 5012 restidsing 5016 dfima3 5026 elima3 5030 imai 5039 elimasn 5050 eliniseg 5053 cotr 5065 issref 5066 cnvsym 5067 intasym 5068 asymref 5069 intirr 5070 codir 5072 qfto 5073 poirr2 5076 dmsnm 5149 coiun 5193 co02 5197 coi1 5199 dffun4 5283 dffun4f 5288 funeu2 5298 funopab 5307 funco 5312 funcnvsn 5320 isarep1 5361 fnop 5380 fneu2 5382 brprcneu 5571 dffv3g 5574 tz6.12 5606 nfvres 5612 0fv 5614 funopfv 5620 fnopfvb 5622 fvmptss2 5656 funfvbrb 5695 dff3im 5727 dff4im 5728 f1ompt 5733 idref 5827 foeqcnvco 5861 f1eqcocnv 5862 fliftel 5864 fliftel1 5865 fliftcnv 5866 f1oiso 5897 ovprc 5982 brabvv 5993 1st2ndbr 6272 xporderlem 6319 opeliunxp2f 6326 rbropapd 6330 ottposg 6343 dftpos3 6350 dftpos4 6351 tposoprab 6368 tfrlem7 6405 tfrexlem 6422 ercnv 6643 brdifun 6649 swoord1 6651 swoord2 6652 0er 6656 elecg 6662 iinerm 6696 brecop 6714 idssen 6870 xpcomco 6923 netap 7368 2omotaplemap 7371 exmidapne 7374 ltdfpr 7621 xrlenlt 8139 aprcl 8721 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 climcau 11691 divides 12133 isstructim 12879 isstructr 12880 imasaddfnlemg 13179 subrgdvds 14030 aprval 14077 lmrcl 14696 lmff 14754 xmeterval 14940 eldvap 15187 dvef 15232 |
| Copyright terms: Public domain | W3C validator |