ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq123d Unicode version

Theorem breq123d 4047
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breq123d.2  |-  ( ph  ->  R  =  S )
breq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
breq123d  |-  ( ph  ->  ( A R C  <-> 
B S D ) )

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 breq123d.3 . . 3  |-  ( ph  ->  C  =  D )
31, 2breq12d 4046 . 2  |-  ( ph  ->  ( A R C  <-> 
B R D ) )
4 breq123d.2 . . 3  |-  ( ph  ->  R  =  S )
54breqd 4044 . 2  |-  ( ph  ->  ( B R D  <-> 
B S D ) )
63, 5bitrd 188 1  |-  ( ph  ->  ( A R C  <-> 
B S D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  sbcbrg  4087  fmptco  5728
  Copyright terms: Public domain W3C validator