ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef Unicode version

Theorem dvef 15401
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef  |-  ( CC 
_D  exp )  =  exp

Proof of Theorem dvef
Dummy variables  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 8123 . . . . . . . 8  |-  CC  e.  _V
2 eff 12174 . . . . . . . 8  |-  exp : CC
--> CC
3 fpmg 6821 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  CC  e.  _V  /\  exp : CC --> CC )  ->  exp  e.  ( CC  ^pm  CC ) )
41, 1, 2, 3mp3an 1371 . . . . . . 7  |-  exp  e.  ( CC  ^pm  CC )
5 dvfcnpm 15364 . . . . . . 7  |-  ( exp 
e.  ( CC  ^pm  CC )  ->  ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC )
64, 5ax-mp 5 . . . . . 6  |-  ( CC 
_D  exp ) : dom  ( CC  _D  exp ) --> CC
7 ffun 5476 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  ->  Fun  ( CC  _D  exp )
)
86, 7ax-mp 5 . . . . 5  |-  Fun  ( CC  _D  exp )
9 subcl 8345 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z  -  x
)  e.  CC )
109ancoms 268 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( z  -  x
)  e.  CC )
11 efadd 12186 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( z  -  x
)  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
1210, 11syldan 282 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
13 pncan3 8354 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x  +  ( z  -  x ) )  =  z )
1413fveq2d 5631 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( exp `  z ) )
1512, 14eqtr3d 2264 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) )  =  ( exp `  z
) )
1615mpteq2dva 4174 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( exp `  z
) ) )
171a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  CC  e.  _V )
18 efcl 12175 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
1918adantr 276 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  x
)  e.  CC )
20 efcl 12175 . . . . . . . . . 10  |-  ( ( z  -  x )  e.  CC  ->  ( exp `  ( z  -  x ) )  e.  CC )
2110, 20syl 14 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  CC )
22 fconstmpt 4766 . . . . . . . . . 10  |-  ( CC 
X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) )
2322a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) ) )
24 eqidd 2230 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )
2517, 19, 21, 23, 24offval2 6234 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
262a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  exp : CC --> CC )
2726feqmptd 5687 . . . . . . . 8  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( exp `  z
) ) )
2816, 25, 273eqtr4d 2272 . . . . . . 7  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  exp )
2928oveq2d 6017 . . . . . 6  |-  ( x  e.  CC  ->  ( CC  _D  ( ( CC 
X.  { ( exp `  x ) } )  oF  x.  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )  =  ( CC  _D  exp ) )
30 fconstg 5522 . . . . . . . . . 10  |-  ( ( exp `  x )  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3118, 30syl 14 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3218snssd 3813 . . . . . . . . 9  |-  ( x  e.  CC  ->  { ( exp `  x ) }  C_  CC )
3331, 32fssd 5486 . . . . . . . 8  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> CC )
34 ssidd 3245 . . . . . . . 8  |-  ( x  e.  CC  ->  CC  C_  CC )
3521fmpttd 5790 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) : CC --> CC )
36 c0ex 8140 . . . . . . . . . . . 12  |-  0  e.  _V
3736snid 3697 . . . . . . . . . . 11  |-  0  e.  { 0 }
38 opelxpi 4751 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  0  e.  { 0 } )  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
3937, 38mpan2 425 . . . . . . . . . 10  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
40 dvconst 15368 . . . . . . . . . . 11  |-  ( ( exp `  x )  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4118, 40syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4239, 41eleqtrrd 2309 . . . . . . . . 9  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  _D  ( CC 
X.  { ( exp `  x ) } ) ) )
43 df-br 4084 . . . . . . . . 9  |-  ( x ( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0  <->  <. x ,  0 >.  e.  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) ) )
4442, 43sylibr 134 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0 )
4526, 10cofmpt 5804 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  (
z  -  x ) ) ) )
4645oveq2d 6017 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x
) ) ) )  =  ( CC  _D  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )
4710fmpttd 5790 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) ) : CC --> CC )
48 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  u  e.  CC )
4948adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u  e.  CC )
50 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  x  e.  CC )
5150adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  x  e.  CC )
52 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u #  x )
5349, 51, 52subap0d 8791 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( u  -  x ) #  0 )
54 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) )
55 oveq1 6008 . . . . . . . . . . . . . . . . 17  |-  ( z  =  u  ->  (
z  -  x )  =  ( u  -  x ) )
56 subcl 8345 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  CC  /\  x  e.  CC )  ->  ( u  -  x
)  e.  CC )
5756ancoms 268 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u  -  x
)  e.  CC )
5854, 55, 48, 57fvmptd3 5728 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u )  =  ( u  -  x ) )
59 oveq1 6008 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
z  -  x )  =  ( x  -  x ) )
60 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  x  e.  CC )
6160, 60subcld 8457 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
x  -  x )  e.  CC )
6261adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  e.  CC )
6354, 59, 50, 62fvmptd3 5728 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  ( x  -  x ) )
64 subid 8365 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  -  x )  =  0 )
6564adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  =  0 )
6663, 65eqtrd 2262 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  0 )
6758, 66breq12d 4096 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
)  <->  ( u  -  x ) #  0 ) )
6867adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  <->  ( u  -  x ) #  0 ) )
6953, 68mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
) )
7069ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u #  x  -> 
( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7170ralrimiva 2603 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  A. u  e.  CC  ( u #  x  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7254, 59, 60, 61fvmptd3 5728 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  ( x  -  x ) )
7372, 64eqtrd 2262 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  0 )
74 dveflem 15400 . . . . . . . . . . . 12  |-  0
( CC  _D  exp ) 1
7573, 74eqbrtrdi 4122 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
) ( CC  _D  exp ) 1 )
76 1ex 8141 . . . . . . . . . . . . . . 15  |-  1  e.  _V
7776snid 3697 . . . . . . . . . . . . . 14  |-  1  e.  { 1 }
78 opelxpi 4751 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  1  e.  { 1 } )  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
7977, 78mpan2 425 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
80 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
81 1cnd 8162 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  1  e.  CC )
82 dvmptidcn 15388 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 )
8382a1i 9 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 ) )
84 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  x  e.  CC )
85 0cnd 8139 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  0  e.  CC )
8660dvmptccn 15389 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  x ) )  =  ( z  e.  CC  |->  0 ) )
8780, 81, 83, 84, 85, 86dvmptsubcn 15397 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( 1  -  0 ) ) )
88 1m0e1 9223 . . . . . . . . . . . . . . . 16  |-  ( 1  -  0 )  =  1
8988mpteq2i 4171 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( z  e.  CC  |->  1 )
90 fconstmpt 4766 . . . . . . . . . . . . . . 15  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
9189, 90eqtr4i 2253 . . . . . . . . . . . . . 14  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( CC  X.  { 1 } )
9287, 91eqtrdi 2278 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( CC  X.  { 1 } ) )
9379, 92eleqtrrd 2309 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
94 df-br 4084 . . . . . . . . . . . 12  |-  ( x ( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1  <->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
9593, 94sylibr 134 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1 )
96 eqid 2229 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 15381 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) ( 1  x.  1 ) )
98 1t1e1 9263 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
9997, 98breqtrdi 4124 . . . . . . . . 9  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1 )
10046, 99breqdi 4098 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 )
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 15376 . . . . . . 7  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( ( 0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) `  x ) )  +  ( 1  x.  (
( CC  X.  {
( exp `  x
) } ) `  x ) ) ) )
10235, 60ffvelcdmd 5771 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x )  e.  CC )
103102mul02d 8538 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  =  0 )
104 fvconst2g 5853 . . . . . . . . . . . 12  |-  ( ( ( exp `  x
)  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { ( exp `  x
) } ) `  x )  =  ( exp `  x ) )
10518, 104mpancom 422 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } ) `  x )  =  ( exp `  x ) )
106105oveq2d 6017 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( 1  x.  ( exp `  x ) ) )
10718mulid2d 8165 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( exp `  x ) )  =  ( exp `  x
) )
108106, 107eqtrd 2262 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( exp `  x ) )
109103, 108oveq12d 6019 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( 0  +  ( exp `  x
) ) )
11018addlidd 8296 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0  +  ( exp `  x ) )  =  ( exp `  x
) )
111109, 110eqtrd 2262 . . . . . . 7  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( exp `  x ) )
112101, 111breqtrd 4109 . . . . . 6  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
) )
11329, 112breqdi 4098 . . . . 5  |-  ( x  e.  CC  ->  x
( CC  _D  exp ) ( exp `  x
) )
114 funbrfv 5670 . . . . 5  |-  ( Fun  ( CC  _D  exp )  ->  ( x ( CC  _D  exp )
( exp `  x
)  ->  ( ( CC  _D  exp ) `  x )  =  ( exp `  x ) ) )
1158, 113, 114mpsyl 65 . . . 4  |-  ( x  e.  CC  ->  (
( CC  _D  exp ) `  x )  =  ( exp `  x
) )
116115mpteq2ia 4170 . . 3  |-  ( x  e.  CC  |->  ( ( CC  _D  exp ) `  x ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
117 ssid 3244 . . . . . . . . 9  |-  CC  C_  CC
118 dvbsssg 15360 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  exp  e.  ( CC  ^pm  CC ) )  ->  dom  ( CC  _D  exp )  C_  CC )
119117, 4, 118mp2an 426 . . . . . . . 8  |-  dom  ( CC  _D  exp )  C_  CC
120 breldmg 4929 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( exp `  x )  e.  CC  /\  x
( CC  _D  exp ) ( exp `  x
) )  ->  x  e.  dom  ( CC  _D  exp ) )
12118, 113, 120mpd3an23 1373 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  exp ) )
122121ssriv 3228 . . . . . . . 8  |-  CC  C_  dom  ( CC  _D  exp )
123119, 122eqssi 3240 . . . . . . 7  |-  dom  ( CC  _D  exp )  =  CC
124123feq2i 5467 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  <->  ( CC  _D  exp ) : CC --> CC )
1256, 124mpbi 145 . . . . 5  |-  ( CC 
_D  exp ) : CC --> CC
126125a1i 9 . . . 4  |-  ( T. 
->  ( CC  _D  exp ) : CC --> CC )
127126feqmptd 5687 . . 3  |-  ( T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( ( CC 
_D  exp ) `  x
) ) )
1282a1i 9 . . . 4  |-  ( T. 
->  exp : CC --> CC )
129128feqmptd 5687 . . 3  |-  ( T. 
->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
130116, 127, 1293eqtr4a 2288 . 2  |-  ( T. 
->  ( CC  _D  exp )  =  exp )
131130mptru 1404 1  |-  ( CC 
_D  exp )  =  exp
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   class class class wbr 4083    |-> cmpt 4145    X. cxp 4717   dom cdm 4719    o. ccom 4723   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6001    oFcof 6216    ^pm cpm 6796   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   # cap 8728   abscabs 11508   expce 12153   MetOpencmopn 14505    _D cdv 15329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  efcn  15442
  Copyright terms: Public domain W3C validator