ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef Unicode version

Theorem dvef 14640
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef  |-  ( CC 
_D  exp )  =  exp

Proof of Theorem dvef
Dummy variables  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7964 . . . . . . . 8  |-  CC  e.  _V
2 eff 11702 . . . . . . . 8  |-  exp : CC
--> CC
3 fpmg 6699 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  CC  e.  _V  /\  exp : CC --> CC )  ->  exp  e.  ( CC  ^pm  CC ) )
41, 1, 2, 3mp3an 1348 . . . . . . 7  |-  exp  e.  ( CC  ^pm  CC )
5 dvfcnpm 14611 . . . . . . 7  |-  ( exp 
e.  ( CC  ^pm  CC )  ->  ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC )
64, 5ax-mp 5 . . . . . 6  |-  ( CC 
_D  exp ) : dom  ( CC  _D  exp ) --> CC
7 ffun 5387 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  ->  Fun  ( CC  _D  exp )
)
86, 7ax-mp 5 . . . . 5  |-  Fun  ( CC  _D  exp )
9 subcl 8185 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z  -  x
)  e.  CC )
109ancoms 268 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( z  -  x
)  e.  CC )
11 efadd 11714 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( z  -  x
)  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
1210, 11syldan 282 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
13 pncan3 8194 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x  +  ( z  -  x ) )  =  z )
1413fveq2d 5538 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( exp `  z ) )
1512, 14eqtr3d 2224 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) )  =  ( exp `  z
) )
1615mpteq2dva 4108 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( exp `  z
) ) )
171a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  CC  e.  _V )
18 efcl 11703 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
1918adantr 276 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  x
)  e.  CC )
20 efcl 11703 . . . . . . . . . 10  |-  ( ( z  -  x )  e.  CC  ->  ( exp `  ( z  -  x ) )  e.  CC )
2110, 20syl 14 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  CC )
22 fconstmpt 4691 . . . . . . . . . 10  |-  ( CC 
X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) )
2322a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) ) )
24 eqidd 2190 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )
2517, 19, 21, 23, 24offval2 6121 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
262a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  exp : CC --> CC )
2726feqmptd 5589 . . . . . . . 8  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( exp `  z
) ) )
2816, 25, 273eqtr4d 2232 . . . . . . 7  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  exp )
2928oveq2d 5911 . . . . . 6  |-  ( x  e.  CC  ->  ( CC  _D  ( ( CC 
X.  { ( exp `  x ) } )  oF  x.  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )  =  ( CC  _D  exp ) )
30 fconstg 5431 . . . . . . . . . 10  |-  ( ( exp `  x )  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3118, 30syl 14 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3218snssd 3752 . . . . . . . . 9  |-  ( x  e.  CC  ->  { ( exp `  x ) }  C_  CC )
3331, 32fssd 5397 . . . . . . . 8  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> CC )
34 ssidd 3191 . . . . . . . 8  |-  ( x  e.  CC  ->  CC  C_  CC )
3521fmpttd 5691 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) : CC --> CC )
36 c0ex 7980 . . . . . . . . . . . 12  |-  0  e.  _V
3736snid 3638 . . . . . . . . . . 11  |-  0  e.  { 0 }
38 opelxpi 4676 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  0  e.  { 0 } )  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
3937, 38mpan2 425 . . . . . . . . . 10  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
40 dvconst 14613 . . . . . . . . . . 11  |-  ( ( exp `  x )  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4118, 40syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4239, 41eleqtrrd 2269 . . . . . . . . 9  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  _D  ( CC 
X.  { ( exp `  x ) } ) ) )
43 df-br 4019 . . . . . . . . 9  |-  ( x ( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0  <->  <. x ,  0 >.  e.  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) ) )
4442, 43sylibr 134 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0 )
4526, 10cofmpt 5705 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  (
z  -  x ) ) ) )
4645oveq2d 5911 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x
) ) ) )  =  ( CC  _D  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )
4710fmpttd 5691 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) ) : CC --> CC )
48 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  u  e.  CC )
4948adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u  e.  CC )
50 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  x  e.  CC )
5150adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  x  e.  CC )
52 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u #  x )
5349, 51, 52subap0d 8630 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( u  -  x ) #  0 )
54 eqid 2189 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) )
55 oveq1 5902 . . . . . . . . . . . . . . . . 17  |-  ( z  =  u  ->  (
z  -  x )  =  ( u  -  x ) )
56 subcl 8185 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  CC  /\  x  e.  CC )  ->  ( u  -  x
)  e.  CC )
5756ancoms 268 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u  -  x
)  e.  CC )
5854, 55, 48, 57fvmptd3 5629 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u )  =  ( u  -  x ) )
59 oveq1 5902 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
z  -  x )  =  ( x  -  x ) )
60 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  x  e.  CC )
6160, 60subcld 8297 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
x  -  x )  e.  CC )
6261adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  e.  CC )
6354, 59, 50, 62fvmptd3 5629 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  ( x  -  x ) )
64 subid 8205 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  -  x )  =  0 )
6564adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  =  0 )
6663, 65eqtrd 2222 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  0 )
6758, 66breq12d 4031 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
)  <->  ( u  -  x ) #  0 ) )
6867adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  <->  ( u  -  x ) #  0 ) )
6953, 68mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
) )
7069ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u #  x  -> 
( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7170ralrimiva 2563 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  A. u  e.  CC  ( u #  x  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7254, 59, 60, 61fvmptd3 5629 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  ( x  -  x ) )
7372, 64eqtrd 2222 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  0 )
74 dveflem 14639 . . . . . . . . . . . 12  |-  0
( CC  _D  exp ) 1
7573, 74eqbrtrdi 4057 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
) ( CC  _D  exp ) 1 )
76 1ex 7981 . . . . . . . . . . . . . . 15  |-  1  e.  _V
7776snid 3638 . . . . . . . . . . . . . 14  |-  1  e.  { 1 }
78 opelxpi 4676 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  1  e.  { 1 } )  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
7977, 78mpan2 425 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
80 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
81 1cnd 8002 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  1  e.  CC )
82 dvmptidcn 14630 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 )
8382a1i 9 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 ) )
84 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  x  e.  CC )
85 0cnd 7979 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  0  e.  CC )
8660dvmptccn 14631 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  x ) )  =  ( z  e.  CC  |->  0 ) )
8780, 81, 83, 84, 85, 86dvmptsubcn 14637 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( 1  -  0 ) ) )
88 1m0e1 9061 . . . . . . . . . . . . . . . 16  |-  ( 1  -  0 )  =  1
8988mpteq2i 4105 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( z  e.  CC  |->  1 )
90 fconstmpt 4691 . . . . . . . . . . . . . . 15  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
9189, 90eqtr4i 2213 . . . . . . . . . . . . . 14  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( CC  X.  { 1 } )
9287, 91eqtrdi 2238 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( CC  X.  { 1 } ) )
9379, 92eleqtrrd 2269 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
94 df-br 4019 . . . . . . . . . . . 12  |-  ( x ( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1  <->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
9593, 94sylibr 134 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1 )
96 eqid 2189 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 14623 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) ( 1  x.  1 ) )
98 1t1e1 9100 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
9997, 98breqtrdi 4059 . . . . . . . . 9  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1 )
10046, 99breqdi 4033 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 )
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 14618 . . . . . . 7  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( ( 0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) `  x ) )  +  ( 1  x.  (
( CC  X.  {
( exp `  x
) } ) `  x ) ) ) )
10235, 60ffvelcdmd 5672 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x )  e.  CC )
103102mul02d 8378 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  =  0 )
104 fvconst2g 5750 . . . . . . . . . . . 12  |-  ( ( ( exp `  x
)  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { ( exp `  x
) } ) `  x )  =  ( exp `  x ) )
10518, 104mpancom 422 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } ) `  x )  =  ( exp `  x ) )
106105oveq2d 5911 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( 1  x.  ( exp `  x ) ) )
10718mulid2d 8005 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( exp `  x ) )  =  ( exp `  x
) )
108106, 107eqtrd 2222 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( exp `  x ) )
109103, 108oveq12d 5913 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( 0  +  ( exp `  x
) ) )
11018addlidd 8136 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0  +  ( exp `  x ) )  =  ( exp `  x
) )
111109, 110eqtrd 2222 . . . . . . 7  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( exp `  x ) )
112101, 111breqtrd 4044 . . . . . 6  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
) )
11329, 112breqdi 4033 . . . . 5  |-  ( x  e.  CC  ->  x
( CC  _D  exp ) ( exp `  x
) )
114 funbrfv 5574 . . . . 5  |-  ( Fun  ( CC  _D  exp )  ->  ( x ( CC  _D  exp )
( exp `  x
)  ->  ( ( CC  _D  exp ) `  x )  =  ( exp `  x ) ) )
1158, 113, 114mpsyl 65 . . . 4  |-  ( x  e.  CC  ->  (
( CC  _D  exp ) `  x )  =  ( exp `  x
) )
116115mpteq2ia 4104 . . 3  |-  ( x  e.  CC  |->  ( ( CC  _D  exp ) `  x ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
117 ssid 3190 . . . . . . . . 9  |-  CC  C_  CC
118 dvbsssg 14607 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  exp  e.  ( CC  ^pm  CC ) )  ->  dom  ( CC  _D  exp )  C_  CC )
119117, 4, 118mp2an 426 . . . . . . . 8  |-  dom  ( CC  _D  exp )  C_  CC
120 breldmg 4851 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( exp `  x )  e.  CC  /\  x
( CC  _D  exp ) ( exp `  x
) )  ->  x  e.  dom  ( CC  _D  exp ) )
12118, 113, 120mpd3an23 1350 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  exp ) )
122121ssriv 3174 . . . . . . . 8  |-  CC  C_  dom  ( CC  _D  exp )
123119, 122eqssi 3186 . . . . . . 7  |-  dom  ( CC  _D  exp )  =  CC
124123feq2i 5378 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  <->  ( CC  _D  exp ) : CC --> CC )
1256, 124mpbi 145 . . . . 5  |-  ( CC 
_D  exp ) : CC --> CC
126125a1i 9 . . . 4  |-  ( T. 
->  ( CC  _D  exp ) : CC --> CC )
127126feqmptd 5589 . . 3  |-  ( T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( ( CC 
_D  exp ) `  x
) ) )
1282a1i 9 . . . 4  |-  ( T. 
->  exp : CC --> CC )
129128feqmptd 5589 . . 3  |-  ( T. 
->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
130116, 127, 1293eqtr4a 2248 . 2  |-  ( T. 
->  ( CC  _D  exp )  =  exp )
131130mptru 1373 1  |-  ( CC 
_D  exp )  =  exp
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2160   _Vcvv 2752    C_ wss 3144   {csn 3607   <.cop 3610   class class class wbr 4018    |-> cmpt 4079    X. cxp 4642   dom cdm 4644    o. ccom 4648   Fun wfun 5229   -->wf 5231   ` cfv 5235  (class class class)co 5895    oFcof 6103    ^pm cpm 6674   CCcc 7838   0cc0 7840   1c1 7841    + caddc 7843    x. cmul 7845    - cmin 8157   # cap 8567   abscabs 11037   expce 11681   MetOpencmopn 13851    _D cdv 14576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960  ax-addf 7962  ax-mulf 7963
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-of 6105  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-frec 6415  df-1o 6440  df-oadd 6444  df-er 6558  df-map 6675  df-pm 6676  df-en 6766  df-dom 6767  df-fin 6768  df-sup 7012  df-inf 7013  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-xneg 9801  df-xadd 9802  df-ico 9923  df-fz 10038  df-fzo 10172  df-seqfrec 10476  df-exp 10550  df-fac 10737  df-bc 10759  df-ihash 10787  df-shft 10855  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-clim 11318  df-sumdc 11393  df-ef 11687  df-rest 12743  df-topgen 12762  df-psmet 13853  df-xmet 13854  df-met 13855  df-bl 13856  df-mopn 13857  df-top 13950  df-topon 13963  df-bases 13995  df-ntr 14048  df-cn 14140  df-cnp 14141  df-tx 14205  df-cncf 14510  df-limced 14577  df-dvap 14578
This theorem is referenced by:  efcn  14641
  Copyright terms: Public domain W3C validator