ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef Unicode version

Theorem dvef 13855
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef  |-  ( CC 
_D  exp )  =  exp

Proof of Theorem dvef
Dummy variables  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7926 . . . . . . . 8  |-  CC  e.  _V
2 eff 11655 . . . . . . . 8  |-  exp : CC
--> CC
3 fpmg 6668 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  CC  e.  _V  /\  exp : CC --> CC )  ->  exp  e.  ( CC  ^pm  CC ) )
41, 1, 2, 3mp3an 1337 . . . . . . 7  |-  exp  e.  ( CC  ^pm  CC )
5 dvfcnpm 13826 . . . . . . 7  |-  ( exp 
e.  ( CC  ^pm  CC )  ->  ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC )
64, 5ax-mp 5 . . . . . 6  |-  ( CC 
_D  exp ) : dom  ( CC  _D  exp ) --> CC
7 ffun 5364 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  ->  Fun  ( CC  _D  exp )
)
86, 7ax-mp 5 . . . . 5  |-  Fun  ( CC  _D  exp )
9 subcl 8146 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z  -  x
)  e.  CC )
109ancoms 268 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( z  -  x
)  e.  CC )
11 efadd 11667 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( z  -  x
)  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
1210, 11syldan 282 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
13 pncan3 8155 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x  +  ( z  -  x ) )  =  z )
1413fveq2d 5515 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( exp `  z ) )
1512, 14eqtr3d 2212 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) )  =  ( exp `  z
) )
1615mpteq2dva 4090 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( exp `  z
) ) )
171a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  CC  e.  _V )
18 efcl 11656 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
1918adantr 276 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  x
)  e.  CC )
20 efcl 11656 . . . . . . . . . 10  |-  ( ( z  -  x )  e.  CC  ->  ( exp `  ( z  -  x ) )  e.  CC )
2110, 20syl 14 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  CC )
22 fconstmpt 4670 . . . . . . . . . 10  |-  ( CC 
X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) )
2322a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) ) )
24 eqidd 2178 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )
2517, 19, 21, 23, 24offval2 6092 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
262a1i 9 . . . . . . . . 9  |-  ( x  e.  CC  ->  exp : CC --> CC )
2726feqmptd 5565 . . . . . . . 8  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( exp `  z
) ) )
2816, 25, 273eqtr4d 2220 . . . . . . 7  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  exp )
2928oveq2d 5885 . . . . . 6  |-  ( x  e.  CC  ->  ( CC  _D  ( ( CC 
X.  { ( exp `  x ) } )  oF  x.  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )  =  ( CC  _D  exp ) )
30 fconstg 5408 . . . . . . . . . 10  |-  ( ( exp `  x )  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3118, 30syl 14 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
3218snssd 3736 . . . . . . . . 9  |-  ( x  e.  CC  ->  { ( exp `  x ) }  C_  CC )
3331, 32fssd 5374 . . . . . . . 8  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> CC )
34 ssidd 3176 . . . . . . . 8  |-  ( x  e.  CC  ->  CC  C_  CC )
3521fmpttd 5667 . . . . . . . 8  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) : CC --> CC )
36 c0ex 7942 . . . . . . . . . . . 12  |-  0  e.  _V
3736snid 3622 . . . . . . . . . . 11  |-  0  e.  { 0 }
38 opelxpi 4655 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  0  e.  { 0 } )  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
3937, 38mpan2 425 . . . . . . . . . 10  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
40 dvconst 13828 . . . . . . . . . . 11  |-  ( ( exp `  x )  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4118, 40syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
4239, 41eleqtrrd 2257 . . . . . . . . 9  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  _D  ( CC 
X.  { ( exp `  x ) } ) ) )
43 df-br 4001 . . . . . . . . 9  |-  ( x ( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0  <->  <. x ,  0 >.  e.  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) ) )
4442, 43sylibr 134 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0 )
4526, 10cofmpt 5681 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  (
z  -  x ) ) ) )
4645oveq2d 5885 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x
) ) ) )  =  ( CC  _D  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )
4710fmpttd 5667 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) ) : CC --> CC )
48 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  u  e.  CC )
4948adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u  e.  CC )
50 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  x  e.  CC )
5150adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  x  e.  CC )
52 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  u #  x )
5349, 51, 52subap0d 8591 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( u  -  x ) #  0 )
54 eqid 2177 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) )
55 oveq1 5876 . . . . . . . . . . . . . . . . 17  |-  ( z  =  u  ->  (
z  -  x )  =  ( u  -  x ) )
56 subcl 8146 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  CC  /\  x  e.  CC )  ->  ( u  -  x
)  e.  CC )
5756ancoms 268 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u  -  x
)  e.  CC )
5854, 55, 48, 57fvmptd3 5605 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u )  =  ( u  -  x ) )
59 oveq1 5876 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
z  -  x )  =  ( x  -  x ) )
60 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  x  e.  CC )
6160, 60subcld 8258 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
x  -  x )  e.  CC )
6261adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  e.  CC )
6354, 59, 50, 62fvmptd3 5605 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  ( x  -  x ) )
64 subid 8166 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  -  x )  =  0 )
6564adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( x  -  x
)  =  0 )
6663, 65eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  =  0 )
6758, 66breq12d 4013 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
)  <->  ( u  -  x ) #  0 ) )
6867adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( ( z  e.  CC  |->  ( z  -  x ) ) `  x )  <->  ( u  -  x ) #  0 ) )
6953, 68mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  u  e.  CC )  /\  u #  x )  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `
 u ) #  ( ( z  e.  CC  |->  ( z  -  x
) ) `  x
) )
7069ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  u  e.  CC )  ->  ( u #  x  -> 
( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7170ralrimiva 2550 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  A. u  e.  CC  ( u #  x  ->  ( ( z  e.  CC  |->  ( z  -  x ) ) `  u ) #  ( (
z  e.  CC  |->  ( z  -  x ) ) `  x ) ) )
7254, 59, 60, 61fvmptd3 5605 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  ( x  -  x ) )
7372, 64eqtrd 2210 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  0 )
74 dveflem 13854 . . . . . . . . . . . 12  |-  0
( CC  _D  exp ) 1
7573, 74eqbrtrdi 4039 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
) ( CC  _D  exp ) 1 )
76 1ex 7943 . . . . . . . . . . . . . . 15  |-  1  e.  _V
7776snid 3622 . . . . . . . . . . . . . 14  |-  1  e.  { 1 }
78 opelxpi 4655 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  1  e.  { 1 } )  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
7977, 78mpan2 425 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
80 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
81 1cnd 7964 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  1  e.  CC )
82 dvmptidcn 13845 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 )
8382a1i 9 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 ) )
84 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  x  e.  CC )
85 0cnd 7941 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  0  e.  CC )
8660dvmptccn 13846 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  x ) )  =  ( z  e.  CC  |->  0 ) )
8780, 81, 83, 84, 85, 86dvmptsubcn 13852 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( 1  -  0 ) ) )
88 1m0e1 9021 . . . . . . . . . . . . . . . 16  |-  ( 1  -  0 )  =  1
8988mpteq2i 4087 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( z  e.  CC  |->  1 )
90 fconstmpt 4670 . . . . . . . . . . . . . . 15  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
9189, 90eqtr4i 2201 . . . . . . . . . . . . . 14  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( CC  X.  { 1 } )
9287, 91eqtrdi 2226 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( CC  X.  { 1 } ) )
9379, 92eleqtrrd 2257 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
94 df-br 4001 . . . . . . . . . . . 12  |-  ( x ( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1  <->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
9593, 94sylibr 134 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1 )
96 eqid 2177 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 13838 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) ( 1  x.  1 ) )
98 1t1e1 9060 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
9997, 98breqtrdi 4041 . . . . . . . . 9  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1 )
10046, 99breqdi 4015 . . . . . . . 8  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 )
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 13833 . . . . . . 7  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( ( 0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) `  x ) )  +  ( 1  x.  (
( CC  X.  {
( exp `  x
) } ) `  x ) ) ) )
10235, 60ffvelcdmd 5648 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x )  e.  CC )
103102mul02d 8339 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  =  0 )
104 fvconst2g 5726 . . . . . . . . . . . 12  |-  ( ( ( exp `  x
)  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { ( exp `  x
) } ) `  x )  =  ( exp `  x ) )
10518, 104mpancom 422 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } ) `  x )  =  ( exp `  x ) )
106105oveq2d 5885 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( 1  x.  ( exp `  x ) ) )
10718mulid2d 7966 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
1  x.  ( exp `  x ) )  =  ( exp `  x
) )
108106, 107eqtrd 2210 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( exp `  x ) )
109103, 108oveq12d 5887 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( 0  +  ( exp `  x
) ) )
11018addid2d 8097 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0  +  ( exp `  x ) )  =  ( exp `  x
) )
111109, 110eqtrd 2210 . . . . . . 7  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( exp `  x ) )
112101, 111breqtrd 4026 . . . . . 6  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
) )
11329, 112breqdi 4015 . . . . 5  |-  ( x  e.  CC  ->  x
( CC  _D  exp ) ( exp `  x
) )
114 funbrfv 5550 . . . . 5  |-  ( Fun  ( CC  _D  exp )  ->  ( x ( CC  _D  exp )
( exp `  x
)  ->  ( ( CC  _D  exp ) `  x )  =  ( exp `  x ) ) )
1158, 113, 114mpsyl 65 . . . 4  |-  ( x  e.  CC  ->  (
( CC  _D  exp ) `  x )  =  ( exp `  x
) )
116115mpteq2ia 4086 . . 3  |-  ( x  e.  CC  |->  ( ( CC  _D  exp ) `  x ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
117 ssid 3175 . . . . . . . . 9  |-  CC  C_  CC
118 dvbsssg 13822 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  exp  e.  ( CC  ^pm  CC ) )  ->  dom  ( CC  _D  exp )  C_  CC )
119117, 4, 118mp2an 426 . . . . . . . 8  |-  dom  ( CC  _D  exp )  C_  CC
120 breldmg 4829 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( exp `  x )  e.  CC  /\  x
( CC  _D  exp ) ( exp `  x
) )  ->  x  e.  dom  ( CC  _D  exp ) )
12118, 113, 120mpd3an23 1339 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  exp ) )
122121ssriv 3159 . . . . . . . 8  |-  CC  C_  dom  ( CC  _D  exp )
123119, 122eqssi 3171 . . . . . . 7  |-  dom  ( CC  _D  exp )  =  CC
124123feq2i 5355 . . . . . 6  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  <->  ( CC  _D  exp ) : CC --> CC )
1256, 124mpbi 145 . . . . 5  |-  ( CC 
_D  exp ) : CC --> CC
126125a1i 9 . . . 4  |-  ( T. 
->  ( CC  _D  exp ) : CC --> CC )
127126feqmptd 5565 . . 3  |-  ( T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( ( CC 
_D  exp ) `  x
) ) )
1282a1i 9 . . . 4  |-  ( T. 
->  exp : CC --> CC )
129128feqmptd 5565 . . 3  |-  ( T. 
->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
130116, 127, 1293eqtr4a 2236 . 2  |-  ( T. 
->  ( CC  _D  exp )  =  exp )
131130mptru 1362 1  |-  ( CC 
_D  exp )  =  exp
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   T. wtru 1354    e. wcel 2148   _Vcvv 2737    C_ wss 3129   {csn 3591   <.cop 3594   class class class wbr 4000    |-> cmpt 4061    X. cxp 4621   dom cdm 4623    o. ccom 4627   Fun wfun 5206   -->wf 5208   ` cfv 5212  (class class class)co 5869    oFcof 6075    ^pm cpm 6643   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    - cmin 8118   # cap 8528   abscabs 10990   expce 11634   MetOpencmopn 13152    _D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  efcn  13856
  Copyright terms: Public domain W3C validator