HomeHome Intuitionistic Logic Explorer
Theorem List (p. 41 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4001-4100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembreq2d 4001 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C R A  <->  C R B ) )
 
Theorembreq12d 4002 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A R C  <->  B R D ) )
 
Theorembreq123d 4003 Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  R  =  S )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A R C  <->  B S D ) )
 
Theorembreqdi 4004 Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C A D )   =>    |-  ( ph  ->  C B D )
 
Theorembreqan12d 4005 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A R C  <->  B R D ) )
 
Theorembreqan12rd 4006 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A R C  <->  B R D ) )
 
Theoremeqnbrtrd 4007 Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  -.  B R C )   =>    |-  ( ph  ->  -.  A R C )
 
Theoremnbrne1 4008 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C )
 
Theoremnbrne2 4009 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B )
 
Theoremeqbrtri 4010 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  B R C   =>    |-  A R C
 
Theoremeqbrtrd 4011 Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrri 4012 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  A R C   =>    |-  B R C
 
Theoremeqbrtrrd 4013 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A R C )   =>    |-  ( ph  ->  B R C )
 
Theorembreqtri 4014 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  B  =  C   =>    |-  A R C
 
Theorembreqtrd 4015 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrri 4016 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  C  =  B   =>    |-  A R C
 
Theorembreqtrrd 4017 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theorem3brtr3i 4018 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C R D
 
Theorem3brtr4i 4019 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C R D
 
Theorem3brtr3d 4020 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4d 4021 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr3g 4022 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4g 4023 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C R D )
 
Theoremeqbrtrid 4024 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A  =  B   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrid 4025 B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrid 4026 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A R B   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrid 4027 B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  A R B   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrdi 4028 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrdi 4029 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrdi 4030 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  B  =  C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrdi 4031 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A R B )   &    |-  C  =  B   =>    |-  ( ph  ->  A R C )
 
Theoremssbrd 4032 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C A D  ->  C B D ) )
 
Theoremssbri 4033 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
 |-  A  C_  B   =>    |-  ( C A D  ->  C B D )
 
Theoremnfbrd 4034 Deduction version of bound-variable hypothesis builder nfbr 4035. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x R )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A R B )
 
Theoremnfbr 4035 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x R   &    |-  F/_ x B   =>    |- 
 F/ x  A R B
 
Theorembrab1 4036* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
 |-  ( x R A  <->  x  e.  { z  |  z R A }
 )
 
Theorembr0 4037 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
 |- 
 -.  A (/) B
 
Theorembrne0 4038 If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4039. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
 |-  ( A R B  ->  R  =/=  (/) )
 
Theorembrm 4039* If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
Theorembrun 4040 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
 |-  ( A ( R  u.  S ) B  <-> 
 ( A R B  \/  A S B ) )
 
Theorembrin 4041 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
 |-  ( A ( R  i^i  S ) B  <-> 
 ( A R B  /\  A S B ) )
 
Theorembrdif 4042 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
 |-  ( A ( R 
 \  S ) B  <-> 
 ( A R B  /\  -.  A S B ) )
 
Theoremsbcbrg 4043 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C ) )
 
Theoremsbcbr12g 4044* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C ) )
 
Theoremsbcbr1g 4045* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R C ) )
 
Theoremsbcbr2g 4046* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
 
Theorembrralrspcev 4047* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
 
Theorembrimralrspcev 4048* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B ) 
 ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
 )
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 4049 Extend class notation to include ordered-pair class abstraction (class builder).
 class  { <. x ,  y >.  |  ph }
 
Syntaxcmpt 4050 Extend the definition of a class to include maps-to notation for defining a function via a rule.
 class  ( x  e.  A  |->  B )
 
Definitiondf-opab 4051* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y ( z  = 
 <. x ,  y >.  /\  ph ) }
 
Definitiondf-mpt 4052* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from  x (in 
A) to  B ( x )". The class expression  B is the value of the function at  x and normally contains the variable  x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
 
Theoremopabss 4053* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { <. x ,  y >.  |  x R y }  C_  R
 
Theoremopabbid 4054 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbidv 4055* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbii 4056 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
 
Theoremnfopab 4057* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ z ph   =>    |-  F/_ z { <. x ,  y >.  |  ph }
 
Theoremnfopab1 4058 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { <. x ,  y >.  |  ph }
 
Theoremnfopab2 4059 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y { <. x ,  y >.  |  ph }
 
Theoremcbvopab 4060* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopabv 4061* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopab1 4062* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ z ph   &    |-  F/ x ps   &    |-  ( x  =  z  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2 4063* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ z ph   &    |-  F/ y ps   &    |-  ( y  =  z  ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcbvopab1s 4064* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [ z  /  x ] ph }
 
Theoremcbvopab1v 4065* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2v 4066* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcsbopabg 4067* Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph } )
 
Theoremunopab 4068 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  u.  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  \/  ps ) }
 
Theoremmpteq12f 4069 An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dva 4070* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dv 4071* An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12 4072* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq1 4073* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( A  =  B  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq1d 4074* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq2ia 4075 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq2i 4076 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  B  =  C   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq12i 4077 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
 
Theoremmpteq2da 4078 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dva 4079* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dv 4080* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremnfmpt 4081* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( y  e.  A  |->  B )
 
Theoremnfmpt1 4082 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
 |-  F/_ x ( x  e.  A  |->  B )
 
Theoremcbvmptf 4083* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremcbvmpt 4084* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
 
Theoremcbvmptv 4085* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremmptv 4086* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
 
2.1.24  Transitive classes
 
Syntaxwtr 4087 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
 wff  Tr  A
 
Definitiondf-tr 4088 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4089 (which is suggestive of the word "transitive"), dftr3 4091, dftr4 4092, and dftr5 4090. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  U. A  C_  A )
 
Theoremdftr2 4089* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
 |-  ( Tr  A  <->  A. x A. y
 ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
 
Theoremdftr5 4090* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
 |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
 
Theoremdftr3 4091* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
 
Theoremdftr4 4092 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A  C_  ~P A )
 
Theoremtreq 4093 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B ) )
 
Theoremtrel 4094 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A ) 
 ->  B  e.  A ) )
 
Theoremtrel3 4095 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
 
Theoremtrss 4096 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
 |-  ( Tr  A  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theoremtrin 4097 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
 |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
 
Theoremtr0 4098 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
 |- 
 Tr  (/)
 
Theoremtrv 4099 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
 |- 
 Tr  _V
 
Theoremtriun 4100* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >