HomeHome Intuitionistic Logic Explorer
Theorem List (p. 41 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4001-4100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnbrne1 4001 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C )
 
Theoremnbrne2 4002 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B )
 
Theoremeqbrtri 4003 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  B R C   =>    |-  A R C
 
Theoremeqbrtrd 4004 Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrri 4005 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  A R C   =>    |-  B R C
 
Theoremeqbrtrrd 4006 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A R C )   =>    |-  ( ph  ->  B R C )
 
Theorembreqtri 4007 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  B  =  C   =>    |-  A R C
 
Theorembreqtrd 4008 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrri 4009 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  C  =  B   =>    |-  A R C
 
Theorembreqtrrd 4010 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theorem3brtr3i 4011 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C R D
 
Theorem3brtr4i 4012 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C R D
 
Theorem3brtr3d 4013 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4d 4014 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr3g 4015 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4g 4016 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C R D )
 
Theoremeqbrtrid 4017 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A  =  B   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrid 4018 B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrid 4019 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A R B   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrid 4020 B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  A R B   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrdi 4021 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrdi 4022 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrdi 4023 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  B  =  C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrdi 4024 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A R B )   &    |-  C  =  B   =>    |-  ( ph  ->  A R C )
 
Theoremssbrd 4025 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C A D  ->  C B D ) )
 
Theoremssbri 4026 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
 |-  A  C_  B   =>    |-  ( C A D  ->  C B D )
 
Theoremnfbrd 4027 Deduction version of bound-variable hypothesis builder nfbr 4028. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x R )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A R B )
 
Theoremnfbr 4028 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x R   &    |-  F/_ x B   =>    |- 
 F/ x  A R B
 
Theorembrab1 4029* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
 |-  ( x R A  <->  x  e.  { z  |  z R A }
 )
 
Theorembr0 4030 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
 |- 
 -.  A (/) B
 
Theorembrne0 4031 If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4032. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
 |-  ( A R B  ->  R  =/=  (/) )
 
Theorembrm 4032* If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
Theorembrun 4033 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
 |-  ( A ( R  u.  S ) B  <-> 
 ( A R B  \/  A S B ) )
 
Theorembrin 4034 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
 |-  ( A ( R  i^i  S ) B  <-> 
 ( A R B  /\  A S B ) )
 
Theorembrdif 4035 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
 |-  ( A ( R 
 \  S ) B  <-> 
 ( A R B  /\  -.  A S B ) )
 
Theoremsbcbrg 4036 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C ) )
 
Theoremsbcbr12g 4037* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C ) )
 
Theoremsbcbr1g 4038* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R C ) )
 
Theoremsbcbr2g 4039* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
 
Theorembrralrspcev 4040* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
 
Theorembrimralrspcev 4041* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B ) 
 ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
 )
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 4042 Extend class notation to include ordered-pair class abstraction (class builder).
 class  { <. x ,  y >.  |  ph }
 
Syntaxcmpt 4043 Extend the definition of a class to include maps-to notation for defining a function via a rule.
 class  ( x  e.  A  |->  B )
 
Definitiondf-opab 4044* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y ( z  = 
 <. x ,  y >.  /\  ph ) }
 
Definitiondf-mpt 4045* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from  x (in 
A) to  B ( x )". The class expression  B is the value of the function at  x and normally contains the variable  x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
 
Theoremopabss 4046* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { <. x ,  y >.  |  x R y }  C_  R
 
Theoremopabbid 4047 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbidv 4048* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbii 4049 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
 
Theoremnfopab 4050* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ z ph   =>    |-  F/_ z { <. x ,  y >.  |  ph }
 
Theoremnfopab1 4051 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { <. x ,  y >.  |  ph }
 
Theoremnfopab2 4052 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y { <. x ,  y >.  |  ph }
 
Theoremcbvopab 4053* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopabv 4054* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopab1 4055* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ z ph   &    |-  F/ x ps   &    |-  ( x  =  z  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2 4056* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ z ph   &    |-  F/ y ps   &    |-  ( y  =  z  ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcbvopab1s 4057* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [ z  /  x ] ph }
 
Theoremcbvopab1v 4058* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2v 4059* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcsbopabg 4060* Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph } )
 
Theoremunopab 4061 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  u.  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  \/  ps ) }
 
Theoremmpteq12f 4062 An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dva 4063* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dv 4064* An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12 4065* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq1 4066* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( A  =  B  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq1d 4067* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq2ia 4068 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq2i 4069 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  B  =  C   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq12i 4070 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
 
Theoremmpteq2da 4071 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dva 4072* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dv 4073* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremnfmpt 4074* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( y  e.  A  |->  B )
 
Theoremnfmpt1 4075 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
 |-  F/_ x ( x  e.  A  |->  B )
 
Theoremcbvmptf 4076* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremcbvmpt 4077* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
 
Theoremcbvmptv 4078* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremmptv 4079* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
 
2.1.24  Transitive classes
 
Syntaxwtr 4080 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
 wff  Tr  A
 
Definitiondf-tr 4081 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4082 (which is suggestive of the word "transitive"), dftr3 4084, dftr4 4085, and dftr5 4083. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  U. A  C_  A )
 
Theoremdftr2 4082* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
 |-  ( Tr  A  <->  A. x A. y
 ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
 
Theoremdftr5 4083* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
 |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
 
Theoremdftr3 4084* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
 
Theoremdftr4 4085 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A  C_  ~P A )
 
Theoremtreq 4086 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B ) )
 
Theoremtrel 4087 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A ) 
 ->  B  e.  A ) )
 
Theoremtrel3 4088 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
 
Theoremtrss 4089 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
 |-  ( Tr  A  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theoremtrin 4090 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
 |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
 
Theoremtr0 4091 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
 |- 
 Tr  (/)
 
Theoremtrv 4092 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
 |- 
 Tr  _V
 
Theoremtriun 4093* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
 
Theoremtruni 4094* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
 
Theoremtrint 4095* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
 
Theoremtrintssm 4096* Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
 |-  ( ( Tr  A  /\  E. x  x  e.  A )  ->  |^| A  C_  A )
 
2.2  IZF Set Theory - add the Axioms of Collection and Separation
 
2.2.1  Introduce the Axiom of Collection
 
Axiomax-coll 4097* Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 4151 but uses a freeness hypothesis in place of one of the distinct variable conditions. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremrepizf 4098* Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4097. It is identical to zfrep6 4099 except for the choice of a freeness hypothesis rather than a disjoint variable condition between  b and  ph. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremzfrep6 4099* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4100 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
2.2.2  Introduce the Axiom of Separation
 
Axiomax-sep 4100* The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a  F/ y ph condition replaced by a disjoint variable condition between  y and  ph).

The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with  x  e.  z) so that it asserts the existence of a collection only if it is smaller than some other collection  z that already exists. This prevents Russell's paradox ru 2950. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

(Contributed by NM, 11-Sep-2006.)

 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >