| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqd | Unicode version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| Ref | Expression |
|---|---|
| breq1d.1 |
|
| Ref | Expression |
|---|---|
| breqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 |
. 2
| |
| 2 | breq 4036 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-br 4035 |
| This theorem is referenced by: breq123d 4048 breqdi 4049 sbcbr12g 4089 supeq123d 7066 shftfibg 11002 shftfib 11005 2shfti 11013 prdsex 12971 prdsval 12975 eqgval 13429 dvdsrd 13726 unitpropdg 13780 znleval 14285 lmbr 14533 |
| Copyright terms: Public domain | W3C validator |