| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > breqd | Unicode version | ||
| Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| breq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| breqd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1d.1 | 
. 2
 | |
| 2 | breq 4035 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-br 4034 | 
| This theorem is referenced by: breq123d 4047 breqdi 4048 sbcbr12g 4088 supeq123d 7057 shftfibg 10985 shftfib 10988 2shfti 10996 prdsex 12940 eqgval 13353 dvdsrd 13650 unitpropdg 13704 znleval 14209 lmbr 14449 | 
| Copyright terms: Public domain | W3C validator |