Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqd | Unicode version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 |
Ref | Expression |
---|---|
breqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 | |
2 | breq 3984 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-br 3983 |
This theorem is referenced by: breq123d 3996 breqdi 3997 sbcbr12g 4037 supeq123d 6956 shftfibg 10762 shftfib 10765 2shfti 10773 lmbr 12853 |
Copyright terms: Public domain | W3C validator |