ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqd Unicode version

Theorem breqd 4056
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypothesis
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
breqd  |-  ( ph  ->  ( C A D  <-> 
C B D ) )

Proof of Theorem breqd
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breq 4047 . 2  |-  ( A  =  B  ->  ( C A D  <->  C B D ) )
31, 2syl 14 1  |-  ( ph  ->  ( C A D  <-> 
C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201  df-br 4046
This theorem is referenced by:  breq123d  4059  breqdi  4060  sbcbr12g  4100  supeq123d  7095  shftfibg  11164  shftfib  11167  2shfti  11175  prdsex  13134  prdsval  13138  eqgval  13592  dvdsrd  13889  unitpropdg  13943  znleval  14448  lmbr  14718
  Copyright terms: Public domain W3C validator