ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqd Unicode version

Theorem breqd 4094
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypothesis
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
breqd  |-  ( ph  ->  ( C A D  <-> 
C B D ) )

Proof of Theorem breqd
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breq 4085 . 2  |-  ( A  =  B  ->  ( C A D  <->  C B D ) )
31, 2syl 14 1  |-  ( ph  ->  ( C A D  <-> 
C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-br 4084
This theorem is referenced by:  breq123d  4097  breqdi  4098  sbcbr12g  4139  supeq123d  7158  shftfibg  11331  shftfib  11334  2shfti  11342  prdsex  13302  prdsval  13306  eqgval  13760  dvdsrd  14058  unitpropdg  14112  znleval  14617  lmbr  14887  wlkpropg  16037  wlkv  16038  wlkvg  16040
  Copyright terms: Public domain W3C validator