Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqd | Unicode version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 |
Ref | Expression |
---|---|
breqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 | |
2 | breq 4000 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 df-br 3999 |
This theorem is referenced by: breq123d 4012 breqdi 4013 sbcbr12g 4053 supeq123d 6980 shftfibg 10797 shftfib 10800 2shfti 10808 lmbr 13284 |
Copyright terms: Public domain | W3C validator |