ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqd Unicode version

Theorem breqd 3993
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypothesis
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
breqd  |-  ( ph  ->  ( C A D  <-> 
C B D ) )

Proof of Theorem breqd
StepHypRef Expression
1 breq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 breq 3984 . 2  |-  ( A  =  B  ->  ( C A D  <->  C B D ) )
31, 2syl 14 1  |-  ( ph  ->  ( C A D  <-> 
C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-br 3983
This theorem is referenced by:  breq123d  3996  breqdi  3997  sbcbr12g  4037  supeq123d  6956  shftfibg  10762  shftfib  10765  2shfti  10773  lmbr  12853
  Copyright terms: Public domain W3C validator