ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv2w Unicode version

Theorem cbv2w 1738
Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 1737 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbv2w.1  |-  F/ x ph
cbv2w.2  |-  F/ y
ph
cbv2w.3  |-  ( ph  ->  F/ y ps )
cbv2w.4  |-  ( ph  ->  F/ x ch )
cbv2w.5  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
cbv2w  |-  ( ph  ->  ( A. x ps  <->  A. y ch ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)

Proof of Theorem cbv2w
StepHypRef Expression
1 cbv2w.1 . . 3  |-  F/ x ph
2 cbv2w.2 . . 3  |-  F/ y
ph
3 cbv2w.3 . . 3  |-  ( ph  ->  F/ y ps )
4 cbv2w.4 . . 3  |-  ( ph  ->  F/ x ch )
5 cbv2w.5 . . . 4  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
6 biimp 117 . . . 4  |-  ( ( ps  <->  ch )  ->  ( ps  ->  ch ) )
75, 6syl6 33 . . 3  |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )
81, 2, 3, 4, 7cbv1v 1735 . 2  |-  ( ph  ->  ( A. x ps 
->  A. y ch )
)
9 equcomi 1692 . . . 4  |-  ( y  =  x  ->  x  =  y )
10 biimpr 129 . . . 4  |-  ( ( ps  <->  ch )  ->  ( ch  ->  ps ) )
119, 5, 10syl56 34 . . 3  |-  ( ph  ->  ( y  =  x  ->  ( ch  ->  ps ) ) )
122, 1, 4, 3, 11cbv1v 1735 . 2  |-  ( ph  ->  ( A. y ch 
->  A. x ps )
)
138, 12impbid 128 1  |-  ( ph  ->  ( A. x ps  <->  A. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator