Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvraldva | Unicode version |
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvraldva.1 |
Ref | Expression |
---|---|
cbvraldva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | . 2 | |
2 | eqidd 2158 | . 2 | |
3 | 1, 2 | cbvraldva2 2687 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-cleq 2150 df-clel 2153 df-ral 2440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |