ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvraldva GIF version

Theorem cbvraldva 2596
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvraldva (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvraldva
StepHypRef Expression
1 cbvraldva.1 . 2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
2 eqidd 2089 . 2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐴)
31, 2cbvraldva2 2594 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wral 2359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-cleq 2081  df-clel 2084  df-ral 2364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator