ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexdva Unicode version

Theorem cbvrexdva 2636
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
cbvrexdva  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. y  e.  A  ch )
)
Distinct variable groups:    ps, y    ch, x    x, A, y    ph, x, y
Allowed substitution hints:    ps( x)    ch( y)

Proof of Theorem cbvrexdva
StepHypRef Expression
1 cbvraldva.1 . 2  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
2 eqidd 2116 . 2  |-  ( (
ph  /\  x  =  y )  ->  A  =  A )
31, 2cbvrexdva2 2634 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. y  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wrex 2392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-cleq 2108  df-clel 2111  df-rex 2397
This theorem is referenced by:  tfrlem3ag  6172  tfrlem3a  6173  tfrlemi1  6195  tfr1onlem3ag  6200
  Copyright terms: Public domain W3C validator