Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrexdva | Unicode version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvraldva.1 |
Ref | Expression |
---|---|
cbvrexdva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | . 2 | |
2 | eqidd 2166 | . 2 | |
3 | 1, 2 | cbvrexdva2 2700 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-rex 2450 |
This theorem is referenced by: tfrlem3ag 6277 tfrlem3a 6278 tfrlemi1 6300 tfr1onlem3ag 6305 |
Copyright terms: Public domain | W3C validator |