| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrexdva2 | Unicode version | ||
| Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| cbvraldva2.1 |
|
| cbvraldva2.2 |
|
| Ref | Expression |
|---|---|
| cbvrexdva2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | cbvraldva2.2 |
. . . . 5
| |
| 3 | 1, 2 | eleq12d 2275 |
. . . 4
|
| 4 | cbvraldva2.1 |
. . . 4
| |
| 5 | 3, 4 | anbi12d 473 |
. . 3
|
| 6 | 5 | cbvexdva 1952 |
. 2
|
| 7 | df-rex 2489 |
. 2
| |
| 8 | df-rex 2489 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-cleq 2197 df-clel 2200 df-rex 2489 |
| This theorem is referenced by: cbvrexdva 2747 acexmid 5942 |
| Copyright terms: Public domain | W3C validator |