ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbcw Unicode version

Theorem cbvsbcw 2978
Description: Version of cbvsbc 2979 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvsbcw.1  |-  F/ y
ph
cbvsbcw.2  |-  F/ x ps
cbvsbcw.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvsbcw  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem cbvsbcw
StepHypRef Expression
1 cbvsbcw.1 . . . 4  |-  F/ y
ph
2 cbvsbcw.2 . . . 4  |-  F/ x ps
3 cbvsbcw.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvabw 2289 . . 3  |-  { x  |  ph }  =  {
y  |  ps }
54eleq2i 2233 . 2  |-  ( A  e.  { x  | 
ph }  <->  A  e.  { y  |  ps }
)
6 df-sbc 2952 . 2  |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
7 df-sbc 2952 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
85, 6, 73bitr4i 211 1  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448    e. wcel 2136   {cab 2151   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by:  cbvcsbw  3049
  Copyright terms: Public domain W3C validator