Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsbcw | Unicode version |
Description: Version of cbvsbc 2989 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvsbcw.1 | |
cbvsbcw.2 | |
cbvsbcw.3 |
Ref | Expression |
---|---|
cbvsbcw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcw.1 | . . . 4 | |
2 | cbvsbcw.2 | . . . 4 | |
3 | cbvsbcw.3 | . . . 4 | |
4 | 1, 2, 3 | cbvabw 2298 | . . 3 |
5 | 4 | eleq2i 2242 | . 2 |
6 | df-sbc 2961 | . 2 | |
7 | df-sbc 2961 | . 2 | |
8 | 5, 6, 7 | 3bitr4i 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wnf 1458 wcel 2146 cab 2161 wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-sbc 2961 |
This theorem is referenced by: cbvcsbw 3059 |
Copyright terms: Public domain | W3C validator |