ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbcw Unicode version

Theorem cbvsbcw 2982
Description: Version of cbvsbc 2983 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvsbcw.1  |-  F/ y
ph
cbvsbcw.2  |-  F/ x ps
cbvsbcw.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvsbcw  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem cbvsbcw
StepHypRef Expression
1 cbvsbcw.1 . . . 4  |-  F/ y
ph
2 cbvsbcw.2 . . . 4  |-  F/ x ps
3 cbvsbcw.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvabw 2293 . . 3  |-  { x  |  ph }  =  {
y  |  ps }
54eleq2i 2237 . 2  |-  ( A  e.  { x  | 
ph }  <->  A  e.  { y  |  ps }
)
6 df-sbc 2956 . 2  |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
7 df-sbc 2956 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
85, 6, 73bitr4i 211 1  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1453    e. wcel 2141   {cab 2156   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956
This theorem is referenced by:  cbvcsbw  3053
  Copyright terms: Public domain W3C validator