ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvcsbw Unicode version

Theorem cbvcsbw 3076
Description: Version of cbvcsb 3077 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvcsbw.1  |-  F/_ y C
cbvcsbw.2  |-  F/_ x D
cbvcsbw.3  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
cbvcsbw  |-  [_ A  /  x ]_ C  = 
[_ A  /  y ]_ D
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    C( x, y)    D( x, y)

Proof of Theorem cbvcsbw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvcsbw.1 . . . . 5  |-  F/_ y C
21nfcri 2326 . . . 4  |-  F/ y  z  e.  C
3 cbvcsbw.2 . . . . 5  |-  F/_ x D
43nfcri 2326 . . . 4  |-  F/ x  z  e.  D
5 cbvcsbw.3 . . . . 5  |-  ( x  =  y  ->  C  =  D )
65eleq2d 2259 . . . 4  |-  ( x  =  y  ->  (
z  e.  C  <->  z  e.  D ) )
72, 4, 6cbvsbcw 3005 . . 3  |-  ( [. A  /  x ]. z  e.  C  <->  [. A  /  y ]. z  e.  D
)
87abbii 2305 . 2  |-  { z  |  [. A  /  x ]. z  e.  C }  =  { z  |  [. A  /  y ]. z  e.  D }
9 df-csb 3073 . 2  |-  [_ A  /  x ]_ C  =  { z  |  [. A  /  x ]. z  e.  C }
10 df-csb 3073 . 2  |-  [_ A  /  y ]_ D  =  { z  |  [. A  /  y ]. z  e.  D }
118, 9, 103eqtr4i 2220 1  |-  [_ A  /  x ]_ C  = 
[_ A  /  y ]_ D
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   {cab 2175   F/_wnfc 2319   [.wsbc 2977   [_csb 3072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-sbc 2978  df-csb 3073
This theorem is referenced by:  cbvprod  11598
  Copyright terms: Public domain W3C validator