ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc7 Unicode version

Theorem sbc7 2977
Description: An equivalence for class substitution in the spirit of df-clab 2152. Note that  x and  A don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbc7  |-  ( [. A  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
Distinct variable groups:    y, A    ph, y    x, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem sbc7
StepHypRef Expression
1 sbcco 2972 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
2 sbc5 2974 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
31, 2bitr3i 185 1  |-  ( [. A  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator