ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc7 Unicode version

Theorem sbc7 3012
Description: An equivalence for class substitution in the spirit of df-clab 2180. Note that  x and  A don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbc7  |-  ( [. A  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
Distinct variable groups:    y, A    ph, y    x, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem sbc7
StepHypRef Expression
1 sbcco 3007 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
2 sbc5 3009 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
31, 2bitr3i 186 1  |-  ( [. A  /  x ]. ph  <->  E. y
( y  =  A  /\  [. y  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator