Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsbcw | GIF version |
Description: Version of cbvsbc 2965 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvsbcw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvsbcw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvsbcw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbcw | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvsbcw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvabw 2280 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
5 | 4 | eleq2i 2224 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
6 | df-sbc 2938 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
7 | df-sbc 2938 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
8 | 5, 6, 7 | 3bitr4i 211 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1440 ∈ wcel 2128 {cab 2143 [wsbc 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-sbc 2938 |
This theorem is referenced by: cbvcsbw 3035 |
Copyright terms: Public domain | W3C validator |