ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbcw GIF version

Theorem cbvsbcw 2982
Description: Version of cbvsbc 2983 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvsbcw.1 𝑦𝜑
cbvsbcw.2 𝑥𝜓
cbvsbcw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbcw ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvsbcw
StepHypRef Expression
1 cbvsbcw.1 . . . 4 𝑦𝜑
2 cbvsbcw.2 . . . 4 𝑥𝜓
3 cbvsbcw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvabw 2293 . . 3 {𝑥𝜑} = {𝑦𝜓}
54eleq2i 2237 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑦𝜓})
6 df-sbc 2956 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
7 df-sbc 2956 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
85, 6, 73bitr4i 211 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1453  wcel 2141  {cab 2156  [wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956
This theorem is referenced by:  cbvcsbw  3053
  Copyright terms: Public domain W3C validator