| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > chvarfv | GIF version | ||
| Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 1779 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| chvarfv.nf | ⊢ Ⅎ𝑥𝜓 |
| chvarfv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| chvarfv.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| chvarfv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chvarfv.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | chvarfv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpd 144 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 4 | 1, 3 | spimfv 1721 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 5 | chvarfv.2 | . 2 ⊢ 𝜑 | |
| 6 | 4, 5 | mpg 1473 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: fproddivapf 11861 fprodsplitf 11862 dvmptfsum 15115 |
| Copyright terms: Public domain | W3C validator |