![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equid | Unicode version |
Description: Identity law for equality
(reflexivity). Lemma 6 of [Tarski] p. 68.
This is often an axiom of equality in textbook systems, but we don't
need it as an axiom since it can be proved from our other axioms.
This proof is similar to Tarski's and makes use of a dummy variable
|
Ref | Expression |
---|---|
equid |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a9e 1707 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-17 1537 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ax-8 1515 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | pm2.43i 49 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | exlimih 1604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfequid 1713 stdpc6 1714 equcomi 1715 equveli 1770 sbid 1785 ax16i 1869 exists1 2138 vjust 2761 vex 2763 reu6 2949 nfccdeq 2983 sbc8g 2993 dfnul3 3449 rab0 3475 int0 3884 ruv 4582 dcextest 4613 relop 4812 f1eqcocnv 5834 mpoxopoveq 6293 snexxph 7009 |
Copyright terms: Public domain | W3C validator |