ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf Unicode version

Theorem fproddivapf 11566
Description: The quotient of two finite products. A version of fproddivap 11565 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph  |-  F/ k
ph
fproddivf.a  |-  ( ph  ->  A  e.  Fin )
fproddivf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fproddivf.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddivf.ap0  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
Assertion
Ref Expression
fproddivapf  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fproddivapf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2306 . . . 4  |-  F/_ j
( B  /  C
)
2 nfcsb1v 3076 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
3 nfcv 2306 . . . . 5  |-  F/_ k  /
4 nfcsb1v 3076 . . . . 5  |-  F/_ k [_ j  /  k ]_ C
52, 3, 4nfov 5866 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)
6 csbeq1a 3052 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
7 csbeq1a 3052 . . . . 5  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
86, 7oveq12d 5857 . . . 4  |-  ( k  =  j  ->  ( B  /  C )  =  ( [_ j  / 
k ]_ B  /  [_ j  /  k ]_ C
) )
91, 5, 8cbvprodi 11495 . . 3  |-  prod_ k  e.  A  ( B  /  C )  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C )
109a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C ) )
11 fproddivf.a . . 3  |-  ( ph  ->  A  e.  Fin )
12 fproddivf.kph . . . . . 6  |-  F/ k
ph
13 nfvd 1516 . . . . . 6  |-  ( ph  ->  F/ k  j  e.  A )
1412, 13nfan1 1551 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
152nfel1 2317 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1614, 15nfim 1559 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
17 eleq1w 2225 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1817anbi2d 460 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
196eleq1d 2233 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
2018, 19imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
21 fproddivf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2216, 20, 21chvarfv 1687 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
234nfel1 2317 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
2414, 23nfim 1559 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
257eleq1d 2233 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
2618, 25imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
27 fproddivf.c . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2824, 26, 27chvarfv 1687 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
29 nfcv 2306 . . . . . 6  |-  F/_ k #
30 nfcv 2306 . . . . . 6  |-  F/_ k
0
314, 29, 30nfbr 4025 . . . . 5  |-  F/ k
[_ j  /  k ]_ C #  0
3214, 31nfim 1559 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
337breq1d 3989 . . . . 5  |-  ( k  =  j  ->  ( C #  0  <->  [_ j  /  k ]_ C #  0 )
)
3418, 33imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C #  0 )  <->  ( ( ph  /\  j  e.  A
)  ->  [_ j  / 
k ]_ C #  0 ) ) )
35 fproddivf.ap0 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
3632, 34, 35chvarfv 1687 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
3711, 22, 28, 36fproddivap 11565 . 2  |-  ( ph  ->  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)  =  ( prod_
j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C ) )
38 nfcv 2306 . . . . . 6  |-  F/_ j B
3938, 2, 6cbvprodi 11495 . . . . 5  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
4039eqcomi 2168 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ B  =  prod_ k  e.  A  B
4140a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  =  prod_ k  e.  A  B )
42 nfcv 2306 . . . . 5  |-  F/_ j C
437equcoms 1695 . . . . . 6  |-  ( j  =  k  ->  C  =  [_ j  /  k ]_ C )
4443eqcomd 2170 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
454, 42, 44cbvprodi 11495 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ C  =  prod_ k  e.  A  C
4645a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ C  =  prod_ k  e.  A  C )
4741, 46oveq12d 5857 . 2  |-  ( ph  ->  ( prod_ j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
4810, 37, 473eqtrd 2201 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342   F/wnf 1447    e. wcel 2135   [_csb 3043   class class class wbr 3979  (class class class)co 5839   Fincfn 6700   CCcc 7745   0cc0 7747   # cap 8473    / cdiv 8562   prod_cprod 11485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865  ax-arch 7866  ax-caucvg 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-po 4271  df-iso 4272  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-isom 5194  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-irdg 6332  df-frec 6353  df-1o 6378  df-oadd 6382  df-er 6495  df-en 6701  df-dom 6702  df-fin 6703  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563  df-inn 8852  df-2 8910  df-3 8911  df-4 8912  df-n0 9109  df-z 9186  df-uz 9461  df-q 9552  df-rp 9584  df-fz 9939  df-fzo 10072  df-seqfrec 10375  df-exp 10449  df-ihash 10683  df-cj 10778  df-re 10779  df-im 10780  df-rsqrt 10934  df-abs 10935  df-clim 11214  df-proddc 11486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator