ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf Unicode version

Theorem fproddivapf 12017
Description: The quotient of two finite products. A version of fproddivap 12016 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph  |-  F/ k
ph
fproddivf.a  |-  ( ph  ->  A  e.  Fin )
fproddivf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fproddivf.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddivf.ap0  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
Assertion
Ref Expression
fproddivapf  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fproddivapf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2349 . . . 4  |-  F/_ j
( B  /  C
)
2 nfcsb1v 3130 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
3 nfcv 2349 . . . . 5  |-  F/_ k  /
4 nfcsb1v 3130 . . . . 5  |-  F/_ k [_ j  /  k ]_ C
52, 3, 4nfov 5987 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)
6 csbeq1a 3106 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
7 csbeq1a 3106 . . . . 5  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
86, 7oveq12d 5975 . . . 4  |-  ( k  =  j  ->  ( B  /  C )  =  ( [_ j  / 
k ]_ B  /  [_ j  /  k ]_ C
) )
91, 5, 8cbvprodi 11946 . . 3  |-  prod_ k  e.  A  ( B  /  C )  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C )
109a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C ) )
11 fproddivf.a . . 3  |-  ( ph  ->  A  e.  Fin )
12 fproddivf.kph . . . . . 6  |-  F/ k
ph
13 nfvd 1553 . . . . . 6  |-  ( ph  ->  F/ k  j  e.  A )
1412, 13nfan1 1588 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
152nfel1 2360 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1614, 15nfim 1596 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
17 eleq1w 2267 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1817anbi2d 464 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
196eleq1d 2275 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
2018, 19imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
21 fproddivf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2216, 20, 21chvarfv 1724 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
234nfel1 2360 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
2414, 23nfim 1596 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
257eleq1d 2275 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
2618, 25imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
27 fproddivf.c . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2824, 26, 27chvarfv 1724 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
29 nfcv 2349 . . . . . 6  |-  F/_ k #
30 nfcv 2349 . . . . . 6  |-  F/_ k
0
314, 29, 30nfbr 4098 . . . . 5  |-  F/ k
[_ j  /  k ]_ C #  0
3214, 31nfim 1596 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
337breq1d 4061 . . . . 5  |-  ( k  =  j  ->  ( C #  0  <->  [_ j  /  k ]_ C #  0 )
)
3418, 33imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C #  0 )  <->  ( ( ph  /\  j  e.  A
)  ->  [_ j  / 
k ]_ C #  0 ) ) )
35 fproddivf.ap0 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
3632, 34, 35chvarfv 1724 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
3711, 22, 28, 36fproddivap 12016 . 2  |-  ( ph  ->  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)  =  ( prod_
j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C ) )
38 nfcv 2349 . . . . . 6  |-  F/_ j B
3938, 2, 6cbvprodi 11946 . . . . 5  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
4039eqcomi 2210 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ B  =  prod_ k  e.  A  B
4140a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  =  prod_ k  e.  A  B )
42 nfcv 2349 . . . . 5  |-  F/_ j C
437equcoms 1732 . . . . . 6  |-  ( j  =  k  ->  C  =  [_ j  /  k ]_ C )
4443eqcomd 2212 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
454, 42, 44cbvprodi 11946 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ C  =  prod_ k  e.  A  C
4645a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ C  =  prod_ k  e.  A  C )
4741, 46oveq12d 5975 . 2  |-  ( ph  ->  ( prod_ j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
4810, 37, 473eqtrd 2243 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   F/wnf 1484    e. wcel 2177   [_csb 3097   class class class wbr 4051  (class class class)co 5957   Fincfn 6840   CCcc 7943   0cc0 7945   # cap 8674    / cdiv 8765   prod_cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator