Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fproddivapf | Unicode version |
Description: The quotient of two finite products. A version of fproddivap 11571 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fproddivf.kph | |
fproddivf.a | |
fproddivf.b | |
fproddivf.c | |
fproddivf.ap0 | # |
Ref | Expression |
---|---|
fproddivapf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . . . 4 | |
2 | nfcsb1v 3078 | . . . . 5 | |
3 | nfcv 2308 | . . . . 5 | |
4 | nfcsb1v 3078 | . . . . 5 | |
5 | 2, 3, 4 | nfov 5872 | . . . 4 |
6 | csbeq1a 3054 | . . . . 5 | |
7 | csbeq1a 3054 | . . . . 5 | |
8 | 6, 7 | oveq12d 5860 | . . . 4 |
9 | 1, 5, 8 | cbvprodi 11501 | . . 3 |
10 | 9 | a1i 9 | . 2 |
11 | fproddivf.a | . . 3 | |
12 | fproddivf.kph | . . . . . 6 | |
13 | nfvd 1517 | . . . . . 6 | |
14 | 12, 13 | nfan1 1552 | . . . . 5 |
15 | 2 | nfel1 2319 | . . . . 5 |
16 | 14, 15 | nfim 1560 | . . . 4 |
17 | eleq1w 2227 | . . . . . 6 | |
18 | 17 | anbi2d 460 | . . . . 5 |
19 | 6 | eleq1d 2235 | . . . . 5 |
20 | 18, 19 | imbi12d 233 | . . . 4 |
21 | fproddivf.b | . . . 4 | |
22 | 16, 20, 21 | chvarfv 1688 | . . 3 |
23 | 4 | nfel1 2319 | . . . . 5 |
24 | 14, 23 | nfim 1560 | . . . 4 |
25 | 7 | eleq1d 2235 | . . . . 5 |
26 | 18, 25 | imbi12d 233 | . . . 4 |
27 | fproddivf.c | . . . 4 | |
28 | 24, 26, 27 | chvarfv 1688 | . . 3 |
29 | nfcv 2308 | . . . . . 6 # | |
30 | nfcv 2308 | . . . . . 6 | |
31 | 4, 29, 30 | nfbr 4028 | . . . . 5 # |
32 | 14, 31 | nfim 1560 | . . . 4 # |
33 | 7 | breq1d 3992 | . . . . 5 # # |
34 | 18, 33 | imbi12d 233 | . . . 4 # # |
35 | fproddivf.ap0 | . . . 4 # | |
36 | 32, 34, 35 | chvarfv 1688 | . . 3 # |
37 | 11, 22, 28, 36 | fproddivap 11571 | . 2 |
38 | nfcv 2308 | . . . . . 6 | |
39 | 38, 2, 6 | cbvprodi 11501 | . . . . 5 |
40 | 39 | eqcomi 2169 | . . . 4 |
41 | 40 | a1i 9 | . . 3 |
42 | nfcv 2308 | . . . . 5 | |
43 | 7 | equcoms 1696 | . . . . . 6 |
44 | 43 | eqcomd 2171 | . . . . 5 |
45 | 4, 42, 44 | cbvprodi 11501 | . . . 4 |
46 | 45 | a1i 9 | . . 3 |
47 | 41, 46 | oveq12d 5860 | . 2 |
48 | 10, 37, 47 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wnf 1448 wcel 2136 csb 3045 class class class wbr 3982 (class class class)co 5842 cfn 6706 cc 7751 cc0 7753 # cap 8479 cdiv 8568 cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-proddc 11492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |