| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fproddivapf | Unicode version | ||
| Description: The quotient of two finite products. A version of fproddivap 12016 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fproddivf.kph |
|
| fproddivf.a |
|
| fproddivf.b |
|
| fproddivf.c |
|
| fproddivf.ap0 |
|
| Ref | Expression |
|---|---|
| fproddivapf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 |
. . . 4
| |
| 2 | nfcsb1v 3130 |
. . . . 5
| |
| 3 | nfcv 2349 |
. . . . 5
| |
| 4 | nfcsb1v 3130 |
. . . . 5
| |
| 5 | 2, 3, 4 | nfov 5987 |
. . . 4
|
| 6 | csbeq1a 3106 |
. . . . 5
| |
| 7 | csbeq1a 3106 |
. . . . 5
| |
| 8 | 6, 7 | oveq12d 5975 |
. . . 4
|
| 9 | 1, 5, 8 | cbvprodi 11946 |
. . 3
|
| 10 | 9 | a1i 9 |
. 2
|
| 11 | fproddivf.a |
. . 3
| |
| 12 | fproddivf.kph |
. . . . . 6
| |
| 13 | nfvd 1553 |
. . . . . 6
| |
| 14 | 12, 13 | nfan1 1588 |
. . . . 5
|
| 15 | 2 | nfel1 2360 |
. . . . 5
|
| 16 | 14, 15 | nfim 1596 |
. . . 4
|
| 17 | eleq1w 2267 |
. . . . . 6
| |
| 18 | 17 | anbi2d 464 |
. . . . 5
|
| 19 | 6 | eleq1d 2275 |
. . . . 5
|
| 20 | 18, 19 | imbi12d 234 |
. . . 4
|
| 21 | fproddivf.b |
. . . 4
| |
| 22 | 16, 20, 21 | chvarfv 1724 |
. . 3
|
| 23 | 4 | nfel1 2360 |
. . . . 5
|
| 24 | 14, 23 | nfim 1596 |
. . . 4
|
| 25 | 7 | eleq1d 2275 |
. . . . 5
|
| 26 | 18, 25 | imbi12d 234 |
. . . 4
|
| 27 | fproddivf.c |
. . . 4
| |
| 28 | 24, 26, 27 | chvarfv 1724 |
. . 3
|
| 29 | nfcv 2349 |
. . . . . 6
| |
| 30 | nfcv 2349 |
. . . . . 6
| |
| 31 | 4, 29, 30 | nfbr 4098 |
. . . . 5
|
| 32 | 14, 31 | nfim 1596 |
. . . 4
|
| 33 | 7 | breq1d 4061 |
. . . . 5
|
| 34 | 18, 33 | imbi12d 234 |
. . . 4
|
| 35 | fproddivf.ap0 |
. . . 4
| |
| 36 | 32, 34, 35 | chvarfv 1724 |
. . 3
|
| 37 | 11, 22, 28, 36 | fproddivap 12016 |
. 2
|
| 38 | nfcv 2349 |
. . . . . 6
| |
| 39 | 38, 2, 6 | cbvprodi 11946 |
. . . . 5
|
| 40 | 39 | eqcomi 2210 |
. . . 4
|
| 41 | 40 | a1i 9 |
. . 3
|
| 42 | nfcv 2349 |
. . . . 5
| |
| 43 | 7 | equcoms 1732 |
. . . . . 6
|
| 44 | 43 | eqcomd 2212 |
. . . . 5
|
| 45 | 4, 42, 44 | cbvprodi 11946 |
. . . 4
|
| 46 | 45 | a1i 9 |
. . 3
|
| 47 | 41, 46 | oveq12d 5975 |
. 2
|
| 48 | 10, 37, 47 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-proddc 11937 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |