ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf Unicode version

Theorem fproddivapf 11674
Description: The quotient of two finite products. A version of fproddivap 11673 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph  |-  F/ k
ph
fproddivf.a  |-  ( ph  ->  A  e.  Fin )
fproddivf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fproddivf.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddivf.ap0  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
Assertion
Ref Expression
fproddivapf  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fproddivapf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2332 . . . 4  |-  F/_ j
( B  /  C
)
2 nfcsb1v 3105 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
3 nfcv 2332 . . . . 5  |-  F/_ k  /
4 nfcsb1v 3105 . . . . 5  |-  F/_ k [_ j  /  k ]_ C
52, 3, 4nfov 5927 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)
6 csbeq1a 3081 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
7 csbeq1a 3081 . . . . 5  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
86, 7oveq12d 5915 . . . 4  |-  ( k  =  j  ->  ( B  /  C )  =  ( [_ j  / 
k ]_ B  /  [_ j  /  k ]_ C
) )
91, 5, 8cbvprodi 11603 . . 3  |-  prod_ k  e.  A  ( B  /  C )  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C )
109a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C ) )
11 fproddivf.a . . 3  |-  ( ph  ->  A  e.  Fin )
12 fproddivf.kph . . . . . 6  |-  F/ k
ph
13 nfvd 1540 . . . . . 6  |-  ( ph  ->  F/ k  j  e.  A )
1412, 13nfan1 1575 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
152nfel1 2343 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1614, 15nfim 1583 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
17 eleq1w 2250 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1817anbi2d 464 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
196eleq1d 2258 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
2018, 19imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
21 fproddivf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2216, 20, 21chvarfv 1711 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
234nfel1 2343 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
2414, 23nfim 1583 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
257eleq1d 2258 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
2618, 25imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
27 fproddivf.c . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2824, 26, 27chvarfv 1711 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
29 nfcv 2332 . . . . . 6  |-  F/_ k #
30 nfcv 2332 . . . . . 6  |-  F/_ k
0
314, 29, 30nfbr 4064 . . . . 5  |-  F/ k
[_ j  /  k ]_ C #  0
3214, 31nfim 1583 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
337breq1d 4028 . . . . 5  |-  ( k  =  j  ->  ( C #  0  <->  [_ j  /  k ]_ C #  0 )
)
3418, 33imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C #  0 )  <->  ( ( ph  /\  j  e.  A
)  ->  [_ j  / 
k ]_ C #  0 ) ) )
35 fproddivf.ap0 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
3632, 34, 35chvarfv 1711 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
3711, 22, 28, 36fproddivap 11673 . 2  |-  ( ph  ->  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)  =  ( prod_
j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C ) )
38 nfcv 2332 . . . . . 6  |-  F/_ j B
3938, 2, 6cbvprodi 11603 . . . . 5  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
4039eqcomi 2193 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ B  =  prod_ k  e.  A  B
4140a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  =  prod_ k  e.  A  B )
42 nfcv 2332 . . . . 5  |-  F/_ j C
437equcoms 1719 . . . . . 6  |-  ( j  =  k  ->  C  =  [_ j  /  k ]_ C )
4443eqcomd 2195 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
454, 42, 44cbvprodi 11603 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ C  =  prod_ k  e.  A  C
4645a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ C  =  prod_ k  e.  A  C )
4741, 46oveq12d 5915 . 2  |-  ( ph  ->  ( prod_ j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
4810, 37, 473eqtrd 2226 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1471    e. wcel 2160   [_csb 3072   class class class wbr 4018  (class class class)co 5897   Fincfn 6767   CCcc 7840   0cc0 7842   # cap 8569    / cdiv 8660   prod_cprod 11593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-proddc 11594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator