ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf Unicode version

Theorem fproddivapf 11594
Description: The quotient of two finite products. A version of fproddivap 11593 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph  |-  F/ k
ph
fproddivf.a  |-  ( ph  ->  A  e.  Fin )
fproddivf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fproddivf.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddivf.ap0  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
Assertion
Ref Expression
fproddivapf  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fproddivapf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . . . 4  |-  F/_ j
( B  /  C
)
2 nfcsb1v 3082 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
3 nfcv 2312 . . . . 5  |-  F/_ k  /
4 nfcsb1v 3082 . . . . 5  |-  F/_ k [_ j  /  k ]_ C
52, 3, 4nfov 5883 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)
6 csbeq1a 3058 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
7 csbeq1a 3058 . . . . 5  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
86, 7oveq12d 5871 . . . 4  |-  ( k  =  j  ->  ( B  /  C )  =  ( [_ j  / 
k ]_ B  /  [_ j  /  k ]_ C
) )
91, 5, 8cbvprodi 11523 . . 3  |-  prod_ k  e.  A  ( B  /  C )  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C )
109a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C ) )
11 fproddivf.a . . 3  |-  ( ph  ->  A  e.  Fin )
12 fproddivf.kph . . . . . 6  |-  F/ k
ph
13 nfvd 1522 . . . . . 6  |-  ( ph  ->  F/ k  j  e.  A )
1412, 13nfan1 1557 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
152nfel1 2323 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1614, 15nfim 1565 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
17 eleq1w 2231 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1817anbi2d 461 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
196eleq1d 2239 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
2018, 19imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
21 fproddivf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2216, 20, 21chvarfv 1693 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
234nfel1 2323 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
2414, 23nfim 1565 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
257eleq1d 2239 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
2618, 25imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
27 fproddivf.c . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2824, 26, 27chvarfv 1693 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
29 nfcv 2312 . . . . . 6  |-  F/_ k #
30 nfcv 2312 . . . . . 6  |-  F/_ k
0
314, 29, 30nfbr 4035 . . . . 5  |-  F/ k
[_ j  /  k ]_ C #  0
3214, 31nfim 1565 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
337breq1d 3999 . . . . 5  |-  ( k  =  j  ->  ( C #  0  <->  [_ j  /  k ]_ C #  0 )
)
3418, 33imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C #  0 )  <->  ( ( ph  /\  j  e.  A
)  ->  [_ j  / 
k ]_ C #  0 ) ) )
35 fproddivf.ap0 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
3632, 34, 35chvarfv 1693 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
3711, 22, 28, 36fproddivap 11593 . 2  |-  ( ph  ->  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)  =  ( prod_
j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C ) )
38 nfcv 2312 . . . . . 6  |-  F/_ j B
3938, 2, 6cbvprodi 11523 . . . . 5  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
4039eqcomi 2174 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ B  =  prod_ k  e.  A  B
4140a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  =  prod_ k  e.  A  B )
42 nfcv 2312 . . . . 5  |-  F/_ j C
437equcoms 1701 . . . . . 6  |-  ( j  =  k  ->  C  =  [_ j  /  k ]_ C )
4443eqcomd 2176 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
454, 42, 44cbvprodi 11523 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ C  =  prod_ k  e.  A  C
4645a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ C  =  prod_ k  e.  A  C )
4741, 46oveq12d 5871 . 2  |-  ( ph  ->  ( prod_ j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
4810, 37, 473eqtrd 2207 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   F/wnf 1453    e. wcel 2141   [_csb 3049   class class class wbr 3989  (class class class)co 5853   Fincfn 6718   CCcc 7772   0cc0 7774   # cap 8500    / cdiv 8589   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator