| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fproddivapf | Unicode version | ||
| Description: The quotient of two finite products. A version of fproddivap 11883 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fproddivf.kph |
|
| fproddivf.a |
|
| fproddivf.b |
|
| fproddivf.c |
|
| fproddivf.ap0 |
|
| Ref | Expression |
|---|---|
| fproddivapf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 |
. . . 4
| |
| 2 | nfcsb1v 3125 |
. . . . 5
| |
| 3 | nfcv 2347 |
. . . . 5
| |
| 4 | nfcsb1v 3125 |
. . . . 5
| |
| 5 | 2, 3, 4 | nfov 5973 |
. . . 4
|
| 6 | csbeq1a 3101 |
. . . . 5
| |
| 7 | csbeq1a 3101 |
. . . . 5
| |
| 8 | 6, 7 | oveq12d 5961 |
. . . 4
|
| 9 | 1, 5, 8 | cbvprodi 11813 |
. . 3
|
| 10 | 9 | a1i 9 |
. 2
|
| 11 | fproddivf.a |
. . 3
| |
| 12 | fproddivf.kph |
. . . . . 6
| |
| 13 | nfvd 1551 |
. . . . . 6
| |
| 14 | 12, 13 | nfan1 1586 |
. . . . 5
|
| 15 | 2 | nfel1 2358 |
. . . . 5
|
| 16 | 14, 15 | nfim 1594 |
. . . 4
|
| 17 | eleq1w 2265 |
. . . . . 6
| |
| 18 | 17 | anbi2d 464 |
. . . . 5
|
| 19 | 6 | eleq1d 2273 |
. . . . 5
|
| 20 | 18, 19 | imbi12d 234 |
. . . 4
|
| 21 | fproddivf.b |
. . . 4
| |
| 22 | 16, 20, 21 | chvarfv 1722 |
. . 3
|
| 23 | 4 | nfel1 2358 |
. . . . 5
|
| 24 | 14, 23 | nfim 1594 |
. . . 4
|
| 25 | 7 | eleq1d 2273 |
. . . . 5
|
| 26 | 18, 25 | imbi12d 234 |
. . . 4
|
| 27 | fproddivf.c |
. . . 4
| |
| 28 | 24, 26, 27 | chvarfv 1722 |
. . 3
|
| 29 | nfcv 2347 |
. . . . . 6
| |
| 30 | nfcv 2347 |
. . . . . 6
| |
| 31 | 4, 29, 30 | nfbr 4089 |
. . . . 5
|
| 32 | 14, 31 | nfim 1594 |
. . . 4
|
| 33 | 7 | breq1d 4053 |
. . . . 5
|
| 34 | 18, 33 | imbi12d 234 |
. . . 4
|
| 35 | fproddivf.ap0 |
. . . 4
| |
| 36 | 32, 34, 35 | chvarfv 1722 |
. . 3
|
| 37 | 11, 22, 28, 36 | fproddivap 11883 |
. 2
|
| 38 | nfcv 2347 |
. . . . . 6
| |
| 39 | 38, 2, 6 | cbvprodi 11813 |
. . . . 5
|
| 40 | 39 | eqcomi 2208 |
. . . 4
|
| 41 | 40 | a1i 9 |
. . 3
|
| 42 | nfcv 2347 |
. . . . 5
| |
| 43 | 7 | equcoms 1730 |
. . . . . 6
|
| 44 | 43 | eqcomd 2210 |
. . . . 5
|
| 45 | 4, 42, 44 | cbvprodi 11813 |
. . . 4
|
| 46 | 45 | a1i 9 |
. . 3
|
| 47 | 41, 46 | oveq12d 5961 |
. 2
|
| 48 | 10, 37, 47 | 3eqtrd 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-proddc 11804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |