ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf Unicode version

Theorem fproddivapf 11642
Description: The quotient of two finite products. A version of fproddivap 11641 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph  |-  F/ k
ph
fproddivf.a  |-  ( ph  ->  A  e.  Fin )
fproddivf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fproddivf.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fproddivf.ap0  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
Assertion
Ref Expression
fproddivapf  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fproddivapf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . . 4  |-  F/_ j
( B  /  C
)
2 nfcsb1v 3092 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
3 nfcv 2319 . . . . 5  |-  F/_ k  /
4 nfcsb1v 3092 . . . . 5  |-  F/_ k [_ j  /  k ]_ C
52, 3, 4nfov 5908 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)
6 csbeq1a 3068 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
7 csbeq1a 3068 . . . . 5  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
86, 7oveq12d 5896 . . . 4  |-  ( k  =  j  ->  ( B  /  C )  =  ( [_ j  / 
k ]_ B  /  [_ j  /  k ]_ C
) )
91, 5, 8cbvprodi 11571 . . 3  |-  prod_ k  e.  A  ( B  /  C )  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C )
109a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C ) )
11 fproddivf.a . . 3  |-  ( ph  ->  A  e.  Fin )
12 fproddivf.kph . . . . . 6  |-  F/ k
ph
13 nfvd 1529 . . . . . 6  |-  ( ph  ->  F/ k  j  e.  A )
1412, 13nfan1 1564 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
152nfel1 2330 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1614, 15nfim 1572 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
17 eleq1w 2238 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1817anbi2d 464 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
196eleq1d 2246 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
2018, 19imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
21 fproddivf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2216, 20, 21chvarfv 1700 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
234nfel1 2330 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
2414, 23nfim 1572 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
257eleq1d 2246 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
2618, 25imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
27 fproddivf.c . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2824, 26, 27chvarfv 1700 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C  e.  CC )
29 nfcv 2319 . . . . . 6  |-  F/_ k #
30 nfcv 2319 . . . . . 6  |-  F/_ k
0
314, 29, 30nfbr 4051 . . . . 5  |-  F/ k
[_ j  /  k ]_ C #  0
3214, 31nfim 1572 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
337breq1d 4015 . . . . 5  |-  ( k  =  j  ->  ( C #  0  <->  [_ j  /  k ]_ C #  0 )
)
3418, 33imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  C #  0 )  <->  ( ( ph  /\  j  e.  A
)  ->  [_ j  / 
k ]_ C #  0 ) ) )
35 fproddivf.ap0 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C #  0 )
3632, 34, 35chvarfv 1700 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ C #  0 )
3711, 22, 28, 36fproddivap 11641 . 2  |-  ( ph  ->  prod_ j  e.  A  ( [_ j  /  k ]_ B  /  [_ j  /  k ]_ C
)  =  ( prod_
j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C ) )
38 nfcv 2319 . . . . . 6  |-  F/_ j B
3938, 2, 6cbvprodi 11571 . . . . 5  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
4039eqcomi 2181 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ B  =  prod_ k  e.  A  B
4140a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  =  prod_ k  e.  A  B )
42 nfcv 2319 . . . . 5  |-  F/_ j C
437equcoms 1708 . . . . . 6  |-  ( j  =  k  ->  C  =  [_ j  /  k ]_ C )
4443eqcomd 2183 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
454, 42, 44cbvprodi 11571 . . . 4  |-  prod_ j  e.  A  [_ j  / 
k ]_ C  =  prod_ k  e.  A  C
4645a1i 9 . . 3  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ C  =  prod_ k  e.  A  C )
4741, 46oveq12d 5896 . 2  |-  ( ph  ->  ( prod_ j  e.  A  [_ j  /  k ]_ B  /  prod_ j  e.  A  [_ j  /  k ]_ C )  =  (
prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
4810, 37, 473eqtrd 2214 1  |-  ( ph  ->  prod_ k  e.  A  ( B  /  C
)  =  ( prod_
k  e.  A  B  /  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/wnf 1460    e. wcel 2148   [_csb 3059   class class class wbr 4005  (class class class)co 5878   Fincfn 6743   CCcc 7812   0cc0 7814   # cap 8541    / cdiv 8632   prod_cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-proddc 11562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator