Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fproddivapf | Unicode version |
Description: The quotient of two finite products. A version of fproddivap 11565 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fproddivf.kph | |
fproddivf.a | |
fproddivf.b | |
fproddivf.c | |
fproddivf.ap0 | # |
Ref | Expression |
---|---|
fproddivapf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2306 | . . . 4 | |
2 | nfcsb1v 3076 | . . . . 5 | |
3 | nfcv 2306 | . . . . 5 | |
4 | nfcsb1v 3076 | . . . . 5 | |
5 | 2, 3, 4 | nfov 5866 | . . . 4 |
6 | csbeq1a 3052 | . . . . 5 | |
7 | csbeq1a 3052 | . . . . 5 | |
8 | 6, 7 | oveq12d 5857 | . . . 4 |
9 | 1, 5, 8 | cbvprodi 11495 | . . 3 |
10 | 9 | a1i 9 | . 2 |
11 | fproddivf.a | . . 3 | |
12 | fproddivf.kph | . . . . . 6 | |
13 | nfvd 1516 | . . . . . 6 | |
14 | 12, 13 | nfan1 1551 | . . . . 5 |
15 | 2 | nfel1 2317 | . . . . 5 |
16 | 14, 15 | nfim 1559 | . . . 4 |
17 | eleq1w 2225 | . . . . . 6 | |
18 | 17 | anbi2d 460 | . . . . 5 |
19 | 6 | eleq1d 2233 | . . . . 5 |
20 | 18, 19 | imbi12d 233 | . . . 4 |
21 | fproddivf.b | . . . 4 | |
22 | 16, 20, 21 | chvarfv 1687 | . . 3 |
23 | 4 | nfel1 2317 | . . . . 5 |
24 | 14, 23 | nfim 1559 | . . . 4 |
25 | 7 | eleq1d 2233 | . . . . 5 |
26 | 18, 25 | imbi12d 233 | . . . 4 |
27 | fproddivf.c | . . . 4 | |
28 | 24, 26, 27 | chvarfv 1687 | . . 3 |
29 | nfcv 2306 | . . . . . 6 # | |
30 | nfcv 2306 | . . . . . 6 | |
31 | 4, 29, 30 | nfbr 4025 | . . . . 5 # |
32 | 14, 31 | nfim 1559 | . . . 4 # |
33 | 7 | breq1d 3989 | . . . . 5 # # |
34 | 18, 33 | imbi12d 233 | . . . 4 # # |
35 | fproddivf.ap0 | . . . 4 # | |
36 | 32, 34, 35 | chvarfv 1687 | . . 3 # |
37 | 11, 22, 28, 36 | fproddivap 11565 | . 2 |
38 | nfcv 2306 | . . . . . 6 | |
39 | 38, 2, 6 | cbvprodi 11495 | . . . . 5 |
40 | 39 | eqcomi 2168 | . . . 4 |
41 | 40 | a1i 9 | . . 3 |
42 | nfcv 2306 | . . . . 5 | |
43 | 7 | equcoms 1695 | . . . . . 6 |
44 | 43 | eqcomd 2170 | . . . . 5 |
45 | 4, 42, 44 | cbvprodi 11495 | . . . 4 |
46 | 45 | a1i 9 | . . 3 |
47 | 41, 46 | oveq12d 5857 | . 2 |
48 | 10, 37, 47 | 3eqtrd 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wnf 1447 wcel 2135 csb 3043 class class class wbr 3979 (class class class)co 5839 cfn 6700 cc 7745 cc0 7747 # cap 8473 cdiv 8562 cprod 11485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-mulrcl 7846 ax-addcom 7847 ax-mulcom 7848 ax-addass 7849 ax-mulass 7850 ax-distr 7851 ax-i2m1 7852 ax-0lt1 7853 ax-1rid 7854 ax-0id 7855 ax-rnegex 7856 ax-precex 7857 ax-cnre 7858 ax-pre-ltirr 7859 ax-pre-ltwlin 7860 ax-pre-lttrn 7861 ax-pre-apti 7862 ax-pre-ltadd 7863 ax-pre-mulgt0 7864 ax-pre-mulext 7865 ax-arch 7866 ax-caucvg 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-if 3519 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-id 4268 df-po 4271 df-iso 4272 df-iord 4341 df-on 4343 df-ilim 4344 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-isom 5194 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-frec 6353 df-1o 6378 df-oadd 6382 df-er 6495 df-en 6701 df-dom 6702 df-fin 6703 df-pnf 7929 df-mnf 7930 df-xr 7931 df-ltxr 7932 df-le 7933 df-sub 8065 df-neg 8066 df-reap 8467 df-ap 8474 df-div 8563 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-n0 9109 df-z 9186 df-uz 9461 df-q 9552 df-rp 9584 df-fz 9939 df-fzo 10072 df-seqfrec 10375 df-exp 10449 df-ihash 10683 df-cj 10778 df-re 10779 df-im 10780 df-rsqrt 10934 df-abs 10935 df-clim 11214 df-proddc 11486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |