ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc Unicode version

Definition df-sumdc 11536
Description: Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11704). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Distinct variable groups:    f, k, m, n, x, j    A, f, m, n, x, j    B, f, m, n, x, j
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 11535 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1363 . . . . . . . 8  class  m
7 cuz 9618 . . . . . . . 8  class  ZZ>=
86, 7cfv 5259 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3157 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 vj . . . . . . . . . 10  setvar  j
1110cv 1363 . . . . . . . . 9  class  j
1211, 1wcel 2167 . . . . . . . 8  wff  j  e.  A
1312wdc 835 . . . . . . 7  wff DECID  j  e.  A
1413, 10, 8wral 2475 . . . . . 6  wff  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A
15 caddc 7899 . . . . . . . 8  class  +
16 vn . . . . . . . . 9  setvar  n
17 cz 9343 . . . . . . . . 9  class  ZZ
1816cv 1363 . . . . . . . . . . 11  class  n
1918, 1wcel 2167 . . . . . . . . . 10  wff  n  e.  A
203, 18, 2csb 3084 . . . . . . . . . 10  class  [_ n  /  k ]_ B
21 cc0 7896 . . . . . . . . . 10  class  0
2219, 20, 21cif 3562 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
2316, 17, 22cmpt 4095 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
2415, 23, 6cseq 10556 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
25 vx . . . . . . . 8  setvar  x
2625cv 1363 . . . . . . 7  class  x
27 cli 11460 . . . . . . 7  class  ~~>
2824, 26, 27wbr 4034 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
299, 14, 28w3a 980 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
3029, 5, 17wrex 2476 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
31 c1 7897 . . . . . . . . 9  class  1
32 cfz 10100 . . . . . . . . 9  class  ...
3331, 6, 32co 5925 . . . . . . . 8  class  ( 1 ... m )
34 vf . . . . . . . . 9  setvar  f
3534cv 1363 . . . . . . . 8  class  f
3633, 1, 35wf1o 5258 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
37 cn 9007 . . . . . . . . . . 11  class  NN
38 cle 8079 . . . . . . . . . . . . 13  class  <_
3918, 6, 38wbr 4034 . . . . . . . . . . . 12  wff  n  <_  m
4018, 35cfv 5259 . . . . . . . . . . . . 13  class  ( f `
 n )
413, 40, 2csb 3084 . . . . . . . . . . . 12  class  [_ (
f `  n )  /  k ]_ B
4239, 41, 21cif 3562 . . . . . . . . . . 11  class  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 )
4316, 37, 42cmpt 4095 . . . . . . . . . 10  class  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
4415, 43, 31cseq 10556 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
456, 44cfv 5259 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
4626, 45wceq 1364 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
4736, 46wa 104 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4847, 34wex 1506 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4948, 5, 37wrex 2476 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )
5030, 49wo 709 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
5150, 25cio 5218 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
524, 51wceq 1364 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11537  nfsum1  11538  nfsum  11539  sumeq2  11541  cbvsum  11542  zsumdc  11566  fsum3  11569
  Copyright terms: Public domain W3C validator