ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc Unicode version

Definition df-sumdc 11295
Description: Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11463). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Distinct variable groups:    f, k, m, n, x, j    A, f, m, n, x, j    B, f, m, n, x, j
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 11294 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1342 . . . . . . . 8  class  m
7 cuz 9466 . . . . . . . 8  class  ZZ>=
86, 7cfv 5188 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3116 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 vj . . . . . . . . . 10  setvar  j
1110cv 1342 . . . . . . . . 9  class  j
1211, 1wcel 2136 . . . . . . . 8  wff  j  e.  A
1312wdc 824 . . . . . . 7  wff DECID  j  e.  A
1413, 10, 8wral 2444 . . . . . 6  wff  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A
15 caddc 7756 . . . . . . . 8  class  +
16 vn . . . . . . . . 9  setvar  n
17 cz 9191 . . . . . . . . 9  class  ZZ
1816cv 1342 . . . . . . . . . . 11  class  n
1918, 1wcel 2136 . . . . . . . . . 10  wff  n  e.  A
203, 18, 2csb 3045 . . . . . . . . . 10  class  [_ n  /  k ]_ B
21 cc0 7753 . . . . . . . . . 10  class  0
2219, 20, 21cif 3520 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
2316, 17, 22cmpt 4043 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
2415, 23, 6cseq 10380 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
25 vx . . . . . . . 8  setvar  x
2625cv 1342 . . . . . . 7  class  x
27 cli 11219 . . . . . . 7  class  ~~>
2824, 26, 27wbr 3982 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
299, 14, 28w3a 968 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
3029, 5, 17wrex 2445 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
31 c1 7754 . . . . . . . . 9  class  1
32 cfz 9944 . . . . . . . . 9  class  ...
3331, 6, 32co 5842 . . . . . . . 8  class  ( 1 ... m )
34 vf . . . . . . . . 9  setvar  f
3534cv 1342 . . . . . . . 8  class  f
3633, 1, 35wf1o 5187 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
37 cn 8857 . . . . . . . . . . 11  class  NN
38 cle 7934 . . . . . . . . . . . . 13  class  <_
3918, 6, 38wbr 3982 . . . . . . . . . . . 12  wff  n  <_  m
4018, 35cfv 5188 . . . . . . . . . . . . 13  class  ( f `
 n )
413, 40, 2csb 3045 . . . . . . . . . . . 12  class  [_ (
f `  n )  /  k ]_ B
4239, 41, 21cif 3520 . . . . . . . . . . 11  class  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 )
4316, 37, 42cmpt 4043 . . . . . . . . . 10  class  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
4415, 43, 31cseq 10380 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
456, 44cfv 5188 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
4626, 45wceq 1343 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
4736, 46wa 103 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4847, 34wex 1480 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4948, 5, 37wrex 2445 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )
5030, 49wo 698 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
5150, 25cio 5151 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
524, 51wceq 1343 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11296  nfsum1  11297  nfsum  11298  sumeq2  11300  cbvsum  11301  zsumdc  11325  fsum3  11328
  Copyright terms: Public domain W3C validator