ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc Unicode version

Definition df-sumdc 11750
Description: Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11918). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Distinct variable groups:    f, k, m, n, x, j    A, f, m, n, x, j    B, f, m, n, x, j
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  setvar  k
41, 2, 3csu 11749 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  setvar  m
65cv 1372 . . . . . . . 8  class  m
7 cuz 9678 . . . . . . . 8  class  ZZ>=
86, 7cfv 5285 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3170 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 vj . . . . . . . . . 10  setvar  j
1110cv 1372 . . . . . . . . 9  class  j
1211, 1wcel 2177 . . . . . . . 8  wff  j  e.  A
1312wdc 836 . . . . . . 7  wff DECID  j  e.  A
1413, 10, 8wral 2485 . . . . . 6  wff  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A
15 caddc 7958 . . . . . . . 8  class  +
16 vn . . . . . . . . 9  setvar  n
17 cz 9402 . . . . . . . . 9  class  ZZ
1816cv 1372 . . . . . . . . . . 11  class  n
1918, 1wcel 2177 . . . . . . . . . 10  wff  n  e.  A
203, 18, 2csb 3097 . . . . . . . . . 10  class  [_ n  /  k ]_ B
21 cc0 7955 . . . . . . . . . 10  class  0
2219, 20, 21cif 3575 . . . . . . . . 9  class  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
2316, 17, 22cmpt 4116 . . . . . . . 8  class  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
2415, 23, 6cseq 10624 . . . . . . 7  class  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
25 vx . . . . . . . 8  setvar  x
2625cv 1372 . . . . . . 7  class  x
27 cli 11674 . . . . . . 7  class  ~~>
2824, 26, 27wbr 4054 . . . . . 6  wff  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
299, 14, 28w3a 981 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
3029, 5, 17wrex 2486 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
31 c1 7956 . . . . . . . . 9  class  1
32 cfz 10160 . . . . . . . . 9  class  ...
3331, 6, 32co 5962 . . . . . . . 8  class  ( 1 ... m )
34 vf . . . . . . . . 9  setvar  f
3534cv 1372 . . . . . . . 8  class  f
3633, 1, 35wf1o 5284 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
37 cn 9066 . . . . . . . . . . 11  class  NN
38 cle 8138 . . . . . . . . . . . . 13  class  <_
3918, 6, 38wbr 4054 . . . . . . . . . . . 12  wff  n  <_  m
4018, 35cfv 5285 . . . . . . . . . . . . 13  class  ( f `
 n )
413, 40, 2csb 3097 . . . . . . . . . . . 12  class  [_ (
f `  n )  /  k ]_ B
4239, 41, 21cif 3575 . . . . . . . . . . 11  class  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 )
4316, 37, 42cmpt 4116 . . . . . . . . . 10  class  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
4415, 43, 31cseq 10624 . . . . . . . . 9  class  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
456, 44cfv 5285 . . . . . . . 8  class  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
4626, 45wceq 1373 . . . . . . 7  wff  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
4736, 46wa 104 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4847, 34wex 1516 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4948, 5, 37wrex 2486 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )
5030, 49wo 710 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
5150, 25cio 5244 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
524, 51wceq 1373 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11751  nfsum1  11752  nfsum  11753  sumeq2  11755  cbvsum  11756  zsumdc  11780  fsum3  11783
  Copyright terms: Public domain W3C validator