ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum1 Unicode version

Theorem nfsum1 11364
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1  |-  F/_ k A
Assertion
Ref Expression
nfsum1  |-  F/_ k sum_ k  e.  A  B

Proof of Theorem nfsum1
Dummy variables  f  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11362 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
2 nfcv 2319 . . . . 5  |-  F/_ k ZZ
3 nfsum1.1 . . . . . . 7  |-  F/_ k A
4 nfcv 2319 . . . . . . 7  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3149 . . . . . 6  |-  F/ k  A  C_  ( ZZ>= `  m )
63nfcri 2313 . . . . . . . 8  |-  F/ k  j  e.  A
76nfdc 1659 . . . . . . 7  |-  F/ kDECID  j  e.  A
84, 7nfralxy 2515 . . . . . 6  |-  F/ k A. j  e.  (
ZZ>= `  m )DECID  j  e.  A
9 nfcv 2319 . . . . . . . 8  |-  F/_ k
m
10 nfcv 2319 . . . . . . . 8  |-  F/_ k  +
113nfcri 2313 . . . . . . . . . 10  |-  F/ k  n  e.  A
12 nfcsb1v 3091 . . . . . . . . . 10  |-  F/_ k [_ n  /  k ]_ B
13 nfcv 2319 . . . . . . . . . 10  |-  F/_ k
0
1411, 12, 13nfif 3563 . . . . . . . . 9  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
152, 14nfmpt 4096 . . . . . . . 8  |-  F/_ k
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
169, 10, 15nfseq 10455 . . . . . . 7  |-  F/_ k  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
17 nfcv 2319 . . . . . . 7  |-  F/_ k  ~~>
18 nfcv 2319 . . . . . . 7  |-  F/_ k
x
1916, 17, 18nfbr 4050 . . . . . 6  |-  F/ k  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x
205, 8, 19nf3an 1566 . . . . 5  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
212, 20nfrexya 2518 . . . 4  |-  F/ k E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )
22 nfcv 2319 . . . . 5  |-  F/_ k NN
23 nfcv 2319 . . . . . . . 8  |-  F/_ k
f
24 nfcv 2319 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
2523, 24, 3nff1o 5460 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
26 nfcv 2319 . . . . . . . . . 10  |-  F/_ k
1
27 nfv 1528 . . . . . . . . . . . 12  |-  F/ k  n  <_  m
28 nfcsb1v 3091 . . . . . . . . . . . 12  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
2927, 28, 13nfif 3563 . . . . . . . . . . 11  |-  F/_ k if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 )
3022, 29nfmpt 4096 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )
3126, 10, 30nfseq 10455 . . . . . . . . 9  |-  F/_ k  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
3231, 9nffv 5526 . . . . . . . 8  |-  F/_ k
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
3332nfeq2 2331 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
3425, 33nfan 1565 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3534nfex 1637 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3622, 35nfrexya 2518 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3721, 36nfor 1574 . . 3  |-  F/ k ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
3837nfiotaw 5183 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
391, 38nfcxfr 2316 1  |-  F/_ k sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   F/_wnfc 2306   A.wral 2455   E.wrex 2456   [_csb 3058    C_ wss 3130   ifcif 3535   class class class wbr 4004    |-> cmpt 4065   iotacio 5177   -1-1-onto->wf1o 5216   ` cfv 5217  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814    <_ cle 7993   NNcn 8919   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008    seqcseq 10445    ~~> cli 11286   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-recs 6306  df-frec 6392  df-seqfrec 10446  df-sumdc 11362
This theorem is referenced by:  mertenslem2  11544
  Copyright terms: Public domain W3C validator