| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1 | Unicode version | ||
| Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3247 |
. . . . . 6
| |
| 2 | eleq2 2293 |
. . . . . . . 8
| |
| 3 | 2 | dcbid 843 |
. . . . . . 7
|
| 4 | 3 | ralbidv 2530 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq2d 2299 |
. . . . . . . . . 10
|
| 7 | 6 | ifbid 3624 |
. . . . . . . . 9
|
| 8 | 7 | mpteq2dva 4174 |
. . . . . . . 8
|
| 9 | 8 | seqeq3d 10677 |
. . . . . . 7
|
| 10 | 9 | breq1d 4093 |
. . . . . 6
|
| 11 | 1, 4, 10 | 3anbi123d 1346 |
. . . . 5
|
| 12 | 11 | rexbidv 2531 |
. . . 4
|
| 13 | f1oeq3 5562 |
. . . . . . 7
| |
| 14 | 13 | anbi1d 465 |
. . . . . 6
|
| 15 | 14 | exbidv 1871 |
. . . . 5
|
| 16 | 15 | rexbidv 2531 |
. . . 4
|
| 17 | 12, 16 | orbi12d 798 |
. . 3
|
| 18 | 17 | iotabidv 5301 |
. 2
|
| 19 | df-sumdc 11865 |
. 2
| |
| 20 | df-sumdc 11865 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 df-sumdc 11865 |
| This theorem is referenced by: sumeq1i 11874 sumeq1d 11877 isumz 11900 fsumadd 11917 fsum2d 11946 fisumrev2 11957 fsummulc2 11959 fsumconst 11965 modfsummod 11969 fsumabs 11976 fsumrelem 11982 fsumiun 11988 fsumcncntop 15241 dvmptfsum 15399 |
| Copyright terms: Public domain | W3C validator |