Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq1 | Unicode version |
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3151 | . . . . . 6 | |
2 | eleq2 2221 | . . . . . . . 8 | |
3 | 2 | dcbid 824 | . . . . . . 7 DECID DECID |
4 | 3 | ralbidv 2457 | . . . . . 6 DECID DECID |
5 | simpl 108 | . . . . . . . . . . 11 | |
6 | 5 | eleq2d 2227 | . . . . . . . . . 10 |
7 | 6 | ifbid 3526 | . . . . . . . . 9 |
8 | 7 | mpteq2dva 4054 | . . . . . . . 8 |
9 | 8 | seqeq3d 10334 | . . . . . . 7 |
10 | 9 | breq1d 3975 | . . . . . 6 |
11 | 1, 4, 10 | 3anbi123d 1294 | . . . . 5 DECID DECID |
12 | 11 | rexbidv 2458 | . . . 4 DECID DECID |
13 | f1oeq3 5402 | . . . . . . 7 | |
14 | 13 | anbi1d 461 | . . . . . 6 |
15 | 14 | exbidv 1805 | . . . . 5 |
16 | 15 | rexbidv 2458 | . . . 4 |
17 | 12, 16 | orbi12d 783 | . . 3 DECID DECID |
18 | 17 | iotabidv 5153 | . 2 DECID DECID |
19 | df-sumdc 11233 | . 2 DECID | |
20 | df-sumdc 11233 | . 2 DECID | |
21 | 18, 19, 20 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 DECID wdc 820 w3a 963 wceq 1335 wex 1472 wcel 2128 wral 2435 wrex 2436 csb 3031 wss 3102 cif 3505 class class class wbr 3965 cmpt 4025 cio 5130 wf1o 5166 cfv 5167 (class class class)co 5818 cc0 7715 c1 7716 caddc 7718 cle 7896 cn 8816 cz 9150 cuz 9422 cfz 9894 cseq 10326 cli 11157 csu 11232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-cnv 4591 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-recs 6246 df-frec 6332 df-seqfrec 10327 df-sumdc 11233 |
This theorem is referenced by: sumeq1i 11242 sumeq1d 11245 isumz 11268 fsumadd 11285 fsum2d 11314 fisumrev2 11325 fsummulc2 11327 fsumconst 11333 modfsummod 11337 fsumabs 11344 fsumrelem 11350 fsumiun 11356 fsumcncntop 12916 |
Copyright terms: Public domain | W3C validator |