| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1 | Unicode version | ||
| Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3216 |
. . . . . 6
| |
| 2 | eleq2 2269 |
. . . . . . . 8
| |
| 3 | 2 | dcbid 840 |
. . . . . . 7
|
| 4 | 3 | ralbidv 2506 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq2d 2275 |
. . . . . . . . . 10
|
| 7 | 6 | ifbid 3592 |
. . . . . . . . 9
|
| 8 | 7 | mpteq2dva 4134 |
. . . . . . . 8
|
| 9 | 8 | seqeq3d 10600 |
. . . . . . 7
|
| 10 | 9 | breq1d 4054 |
. . . . . 6
|
| 11 | 1, 4, 10 | 3anbi123d 1325 |
. . . . 5
|
| 12 | 11 | rexbidv 2507 |
. . . 4
|
| 13 | f1oeq3 5512 |
. . . . . . 7
| |
| 14 | 13 | anbi1d 465 |
. . . . . 6
|
| 15 | 14 | exbidv 1848 |
. . . . 5
|
| 16 | 15 | rexbidv 2507 |
. . . 4
|
| 17 | 12, 16 | orbi12d 795 |
. . 3
|
| 18 | 17 | iotabidv 5254 |
. 2
|
| 19 | df-sumdc 11665 |
. 2
| |
| 20 | df-sumdc 11665 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-seqfrec 10593 df-sumdc 11665 |
| This theorem is referenced by: sumeq1i 11674 sumeq1d 11677 isumz 11700 fsumadd 11717 fsum2d 11746 fisumrev2 11757 fsummulc2 11759 fsumconst 11765 modfsummod 11769 fsumabs 11776 fsumrelem 11782 fsumiun 11788 fsumcncntop 15039 dvmptfsum 15197 |
| Copyright terms: Public domain | W3C validator |