| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1 | Unicode version | ||
| Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3224 |
. . . . . 6
| |
| 2 | eleq2 2271 |
. . . . . . . 8
| |
| 3 | 2 | dcbid 840 |
. . . . . . 7
|
| 4 | 3 | ralbidv 2508 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq2d 2277 |
. . . . . . . . . 10
|
| 7 | 6 | ifbid 3601 |
. . . . . . . . 9
|
| 8 | 7 | mpteq2dva 4150 |
. . . . . . . 8
|
| 9 | 8 | seqeq3d 10637 |
. . . . . . 7
|
| 10 | 9 | breq1d 4069 |
. . . . . 6
|
| 11 | 1, 4, 10 | 3anbi123d 1325 |
. . . . 5
|
| 12 | 11 | rexbidv 2509 |
. . . 4
|
| 13 | f1oeq3 5534 |
. . . . . . 7
| |
| 14 | 13 | anbi1d 465 |
. . . . . 6
|
| 15 | 14 | exbidv 1849 |
. . . . 5
|
| 16 | 15 | rexbidv 2509 |
. . . 4
|
| 17 | 12, 16 | orbi12d 795 |
. . 3
|
| 18 | 17 | iotabidv 5273 |
. 2
|
| 19 | df-sumdc 11780 |
. 2
| |
| 20 | df-sumdc 11780 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-sumdc 11780 |
| This theorem is referenced by: sumeq1i 11789 sumeq1d 11792 isumz 11815 fsumadd 11832 fsum2d 11861 fisumrev2 11872 fsummulc2 11874 fsumconst 11880 modfsummod 11884 fsumabs 11891 fsumrelem 11897 fsumiun 11903 fsumcncntop 15154 dvmptfsum 15312 |
| Copyright terms: Public domain | W3C validator |