ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1 Unicode version

Theorem sumeq1 11666
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)

Proof of Theorem sumeq1
Dummy variables  f  m  n  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3216 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 eleq2 2269 . . . . . . . 8  |-  ( A  =  B  ->  (
j  e.  A  <->  j  e.  B ) )
32dcbid 840 . . . . . . 7  |-  ( A  =  B  ->  (DECID  j  e.  A  <-> DECID  j  e.  B )
)
43ralbidv 2506 . . . . . 6  |-  ( A  =  B  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  B ) )
5 simpl 109 . . . . . . . . . . 11  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  A  =  B )
65eleq2d 2275 . . . . . . . . . 10  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  ( n  e.  A  <->  n  e.  B ) )
76ifbid 3592 . . . . . . . . 9  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )  =  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )
87mpteq2dva 4134 . . . . . . . 8  |-  ( A  =  B  ->  (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )
98seqeq3d 10600 . . . . . . 7  |-  ( A  =  B  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ) )
109breq1d 4054 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
111, 4, 103anbi123d 1325 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <-> 
( B  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  B  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
1211rexbidv 2507 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  B  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
13 f1oeq3 5512 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1413anbi1d 465 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
1514exbidv 1848 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
1615rexbidv 2507 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
1712, 16orbi12d 795 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  B  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) ) )
1817iotabidv 5254 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  B  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) ) )
19 df-sumdc 11665 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
20 df-sumdc 11665 . 2  |-  sum_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  B  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
2118, 19, 203eqtr4g 2263 1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   [_csb 3093    C_ wss 3166   ifcif 3571   class class class wbr 4044    |-> cmpt 4105   iotacio 5230   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   0cc0 7925   1c1 7926    + caddc 7928    <_ cle 8108   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593  df-sumdc 11665
This theorem is referenced by:  sumeq1i  11674  sumeq1d  11677  isumz  11700  fsumadd  11717  fsum2d  11746  fisumrev2  11757  fsummulc2  11759  fsumconst  11765  modfsummod  11769  fsumabs  11776  fsumrelem  11782  fsumiun  11788  fsumcncntop  15039  dvmptfsum  15197
  Copyright terms: Public domain W3C validator