| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1 | Unicode version | ||
| Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3206 |
. . . . . 6
| |
| 2 | eleq2 2260 |
. . . . . . . 8
| |
| 3 | 2 | dcbid 839 |
. . . . . . 7
|
| 4 | 3 | ralbidv 2497 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq2d 2266 |
. . . . . . . . . 10
|
| 7 | 6 | ifbid 3582 |
. . . . . . . . 9
|
| 8 | 7 | mpteq2dva 4123 |
. . . . . . . 8
|
| 9 | 8 | seqeq3d 10547 |
. . . . . . 7
|
| 10 | 9 | breq1d 4043 |
. . . . . 6
|
| 11 | 1, 4, 10 | 3anbi123d 1323 |
. . . . 5
|
| 12 | 11 | rexbidv 2498 |
. . . 4
|
| 13 | f1oeq3 5494 |
. . . . . . 7
| |
| 14 | 13 | anbi1d 465 |
. . . . . 6
|
| 15 | 14 | exbidv 1839 |
. . . . 5
|
| 16 | 15 | rexbidv 2498 |
. . . 4
|
| 17 | 12, 16 | orbi12d 794 |
. . 3
|
| 18 | 17 | iotabidv 5241 |
. 2
|
| 19 | df-sumdc 11519 |
. 2
| |
| 20 | df-sumdc 11519 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-sumdc 11519 |
| This theorem is referenced by: sumeq1i 11528 sumeq1d 11531 isumz 11554 fsumadd 11571 fsum2d 11600 fisumrev2 11611 fsummulc2 11613 fsumconst 11619 modfsummod 11623 fsumabs 11630 fsumrelem 11636 fsumiun 11642 fsumcncntop 14803 dvmptfsum 14961 |
| Copyright terms: Public domain | W3C validator |