HomeHome Intuitionistic Logic Explorer
Theorem List (p. 114 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11301-11400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-s7 11301 Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A B C D E F G ">  =  ( <" A B C D E F "> ++  <" G "> )
 
Definitiondf-s8 11302 Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A B C D E F G H ">  =  ( <" A B C D E F G "> ++  <" H "> )
 
Theoremcats1cld 11303 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  A )   &    |-  ( ph  ->  X  e.  A )   =>    |-  ( ph  ->  T  e. Word  A )
 
Theoremcats1fvn 11304 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  S  e. Word  _V   &    |-  ( `  S )  =  M   =>    |-  ( X  e.  V  ->  ( T `  M )  =  X )
 
Theoremcats1fvnd 11305 The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( `  S )  =  M )   =>    |-  ( ph  ->  ( T `  M )  =  X )
 
Theoremcats1fvd 11306 A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  ( `  S )  =  M )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  ( S `  N )  =  Y )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( T `  N )  =  Y )
 
Theoremcats1lend 11307 The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( `  S )  =  M   &    |-  ( M  +  1 )  =  N   =>    |-  ( ph  ->  ( `  T )  =  N )
 
Theoremcats1catd 11308 Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  T  =  ( S ++ 
 <" X "> )   &    |-  ( ph  ->  A  e. Word  _V )   &    |-  ( ph  ->  S  e. Word  _V )   &    |-  ( ph  ->  X  e.  W )   &    |-  ( ph  ->  C  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  B  =  ( A ++  S ) )   =>    |-  ( ph  ->  C  =  ( A ++  T ) )
 
Theoremcats2catd 11309 Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.)
 |-  ( ph  ->  B  e. Word  _V )   &    |-  ( ph  ->  D  e. Word  _V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  W )   &    |-  ( ph  ->  A  =  ( B ++  <" X "> ) )   &    |-  ( ph  ->  C  =  (
 <" Y "> ++  D ) )   =>    |-  ( ph  ->  ( A ++  C )  =  ( ( B ++  <" X Y "> ) ++  D ) )
 
Theorems2eqd 11310 Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   =>    |-  ( ph  ->  <" A B ">  = 
 <" N O "> )
 
Theorems3eqd 11311 Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   =>    |-  ( ph  ->  <" A B C ">  =  <" N O P "> )
 
Theorems4eqd 11312 Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   &    |-  ( ph  ->  D  =  Q )   =>    |-  ( ph  ->  <" A B C D ">  = 
 <" N O P Q "> )
 
Theorems5eqd 11313 Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   &    |-  ( ph  ->  D  =  Q )   &    |-  ( ph  ->  E  =  R )   =>    |-  ( ph  ->  <" A B C D E ">  =  <" N O P Q R "> )
 
Theorems6eqd 11314 Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   &    |-  ( ph  ->  D  =  Q )   &    |-  ( ph  ->  E  =  R )   &    |-  ( ph  ->  F  =  S )   =>    |-  ( ph  ->  <" A B C D E F ">  =  <" N O P Q R S "> )
 
Theorems7eqd 11315 Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   &    |-  ( ph  ->  D  =  Q )   &    |-  ( ph  ->  E  =  R )   &    |-  ( ph  ->  F  =  S )   &    |-  ( ph  ->  G  =  T )   =>    |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )
 
Theorems8eqd 11316 Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  =  N )   &    |-  ( ph  ->  B  =  O )   &    |-  ( ph  ->  C  =  P )   &    |-  ( ph  ->  D  =  Q )   &    |-  ( ph  ->  E  =  R )   &    |-  ( ph  ->  F  =  S )   &    |-  ( ph  ->  G  =  T )   &    |-  ( ph  ->  H  =  U )   =>    |-  ( ph  ->  <" A B C D E F G H ">  =  <" N O P Q R S T U "> )
 
Theorems3eq2 11317 Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
 |-  ( B  =  D  -> 
 <" A B C ">  =  <" A D C "> )
 
Theorems2cld 11318 A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  <" A B ">  e. Word  X )
 
Theorems3cld 11319 A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   =>    |-  ( ph  ->  <" A B C ">  e. Word  X )
 
Theorems4cld 11320 A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  X )   =>    |-  ( ph  ->  <" A B C D ">  e. Word  X )
 
Theorems5cld 11321 A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  E  e.  X )   =>    |-  ( ph  ->  <" A B C D E ">  e. Word  X )
 
Theorems6cld 11322 A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  E  e.  X )   &    |-  ( ph  ->  F  e.  X )   =>    |-  ( ph  ->  <" A B C D E F ">  e. Word  X )
 
Theorems7cld 11323 A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  E  e.  X )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ph  ->  G  e.  X )   =>    |-  ( ph  ->  <" A B C D E F G ">  e. Word  X )
 
Theorems8cld 11324 A length 8 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  E  e.  X )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  H  e.  X )   =>    |-  ( ph  ->  <" A B C D E F G H ">  e. Word  X )
 
Theorems2cl 11325 A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( A  e.  X  /\  B  e.  X )  ->  <" A B ">  e. Word  X )
 
Theorems3cl 11326 A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) 
 ->  <" A B C ">  e. Word  X )
 
Theorems2fv0g 11327 Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <" A B "> `  0
 )  =  A )
 
Theorems2fv1g 11328 Extract the second symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <" A B "> `  1
 )  =  B )
 
Theorems2leng 11329 The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( `  <" A B "> )  =  2 )
 
Theorems2dmg 11330 The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  dom  <" A B ">  =  {
 0 ,  1 } )
 
Theorems3fv0g 11331 Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <" A B C "> `  0
 )  =  A )
 
Theorems3fv1g 11332 Extract the second symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <" A B C "> `  1
 )  =  B )
 
4.8  Elementary real and complex functions
 
4.8.1  The "shift" operation
 
Syntaxcshi 11333 Extend class notation with function shifter.
 class  shift
 
Definitiondf-shft 11334* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of  CC) and produces a new function on  CC. See shftval 11344 for its value. (Contributed by NM, 20-Jul-2005.)
 |- 
 shift  =  ( f  e.  _V ,  x  e. 
 CC  |->  { <. y ,  z >.  |  ( y  e. 
 CC  /\  ( y  -  x ) f z ) } )
 
Theoremshftlem 11335* Two ways to write a shifted set  ( B  +  A
). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
 
Theoremshftuz 11336* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A ) ) )
 
Theoremshftfvalg 11337* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremovshftex 11338 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
 
Theoremshftfibg 11339 Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) }
 ) )
 
Theoremshftfval 11340* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremshftdm 11341* Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F }
 )
 
Theoremshftfib 11342 Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A )
 " { B }
 )  =  ( F
 " { ( B  -  A ) }
 ) )
 
Theoremshftfn 11343* Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn 
 { x  e.  CC  |  ( x  -  A )  e.  B }
 )
 
Theoremshftval 11344 Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval2 11345 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( F  shift  ( A  -  B ) ) `  ( A  +  C ) )  =  ( F `  ( B  +  C ) ) )
 
Theoremshftval3 11346 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  ( A  -  B ) ) `
  A )  =  ( F `  B ) )
 
Theoremshftval4 11347 Value of a sequence shifted by  -u A. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B )
 ) )
 
Theoremshftval5 11348 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  ( B  +  A ) )  =  ( F `  B ) )
 
Theoremshftf 11349* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e. 
 CC  |  ( x  -  A )  e.  B } --> C )
 
Theorem2shfti 11350 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) 
 shift  B )  =  ( F  shift  ( A  +  B ) ) )
 
Theoremshftidt2 11351 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( F  shift  0 )  =  ( F  |`  CC )
 
Theoremshftidt 11352 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( ( F 
 shift  0 ) `  A )  =  ( F `  A ) )
 
Theoremshftcan1 11353 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  A )  shift  -u A ) `  B )  =  ( F `  B ) )
 
Theoremshftcan2 11354 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  -u A )  shift  A ) `
  B )  =  ( F `  B ) )
 
Theoremshftvalg 11355 Value of a sequence shifted by  A. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval4g 11356 Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) )
 
Theoremseq3shft 11357* Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) ) 
 ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq
 M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
 
4.8.2  Real and imaginary parts; conjugate
 
Syntaxccj 11358 Extend class notation to include complex conjugate function.
 class  *
 
Syntaxcre 11359 Extend class notation to include real part of a complex number.
 class  Re
 
Syntaxcim 11360 Extend class notation to include imaginary part of a complex number.
 class  Im
 
Definitiondf-cj 11361* Define the complex conjugate function. See cjcli 11432 for its closure and cjval 11364 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e. 
 RR ) ) )
 
Definitiondf-re 11362 Define a function whose value is the real part of a complex number. See reval 11368 for its value, recli 11430 for its closure, and replim 11378 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `
  x ) ) 
 /  2 ) )
 
Definitiondf-im 11363 Define a function whose value is the imaginary part of a complex number. See imval 11369 for its value, imcli 11431 for its closure, and replim 11378 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Im  =  ( x  e.  CC  |->  ( Re
 `  ( x  /  _i ) ) )
 
Theoremcjval 11364* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( iota_ x  e. 
 CC  ( ( A  +  x )  e. 
 RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
 
Theoremcjth 11365 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( ( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
 
Theoremcjf 11366 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  * : CC --> CC
 
Theoremcjcl 11367 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  e.  CC )
 
Theoremreval 11368 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( ( A  +  ( * `  A ) )  / 
 2 ) )
 
Theoremimval 11369 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( A  /  _i ) ) )
 
Theoremimre 11370 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( -u _i  x.  A ) ) )
 
Theoremreim 11371 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( Im `  ( _i  x.  A ) ) )
 
Theoremrecl 11372 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  e.  RR )
 
Theoremimcl 11373 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  e.  RR )
 
Theoremref 11374 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Re : CC --> RR
 
Theoremimf 11375 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Im : CC --> RR
 
Theoremcrre 11376 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrim 11377 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremreplim 11378 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremim 11379 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremreim0 11380 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  RR  ->  ( Im `  A )  =  0 )
 
Theoremreim0b 11381 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
 
Theoremrereb 11382 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
 
Theoremmulreap 11383 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e. 
 RR ) )
 
Theoremrere 11384 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( A  e.  RR  ->  ( Re `  A )  =  A )
 
Theoremcjreb 11385 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
 
Theoremrecj 11386 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremreneg 11387 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  -u A )  =  -u ( Re
 `  A ) )
 
Theoremreadd 11388 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B ) )  =  (
 ( Re `  A )  +  ( Re `  B ) ) )
 
Theoremresub 11389 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  -  B ) )  =  (
 ( Re `  A )  -  ( Re `  B ) ) )
 
Theoremremullem 11390 Lemma for remul 11391, immul 11398, and cjmul 11404. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re
 `  ( A  x.  B ) )  =  ( ( ( Re
 `  A )  x.  ( Re `  B ) )  -  (
 ( Im `  A )  x.  ( Im `  B ) ) ) 
 /\  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) ) )
 
Theoremremul 11391 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im
 `  A )  x.  ( Im `  B ) ) ) )
 
Theoremremul2 11392 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremredivap 11393 Real part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Re `  ( A 
 /  B ) )  =  ( ( Re
 `  A )  /  B ) )
 
Theoremimcj 11394 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremimneg 11395 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  -u A )  =  -u ( Im
 `  A ) )
 
Theoremimadd 11396 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B ) )  =  (
 ( Im `  A )  +  ( Im `  B ) ) )
 
Theoremimsub 11397 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  -  B ) )  =  (
 ( Im `  A )  -  ( Im `  B ) ) )
 
Theoremimmul 11398 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) ) )
 
Theoremimmul2 11399 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremimdivap 11400 Imaginary part of a division. Related to immul2 11399. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Im `  ( A 
 /  B ) )  =  ( ( Im
 `  A )  /  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >