Theorem List for Intuitionistic Logic Explorer - 11301-11400   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | sqrtlei 11301 | 
Square root is monotonic.  (Contributed by NM, 3-Aug-1999.)
 | 
                                                                          | 
|   | 
| Theorem | sqrtlti 11302 | 
Square root is strictly monotonic.  (Contributed by Roy F. Longton,
       8-Aug-2005.)
 | 
                                                                          | 
|   | 
| Theorem | abslti 11303 | 
Absolute value and 'less than' relation.  (Contributed by NM,
       6-Apr-2005.)
 | 
                                                             | 
|   | 
| Theorem | abslei 11304 | 
Absolute value and 'less than or equal to' relation.  (Contributed by
       NM, 6-Apr-2005.)
 | 
                                                             | 
|   | 
| Theorem | absvalsqi 11305 | 
Square of value of absolute value function.  (Contributed by NM,
       2-Oct-1999.)
 | 
                                        | 
|   | 
| Theorem | absvalsq2i 11306 | 
Square of value of absolute value function.  (Contributed by NM,
       2-Oct-1999.)
 | 
                                                    | 
|   | 
| Theorem | abscli 11307 | 
Real closure of absolute value.  (Contributed by NM, 2-Aug-1999.)
 | 
                       
   | 
|   | 
| Theorem | absge0i 11308 | 
Absolute value is nonnegative.  (Contributed by NM, 2-Aug-1999.)
 | 
                          | 
|   | 
| Theorem | absval2i 11309 | 
Value of absolute value function.  Definition 10.36 of [Gleason] p. 133.
       (Contributed by NM, 2-Oct-1999.)
 | 
                       
                             | 
|   | 
| Theorem | abs00i 11310 | 
The absolute value of a number is zero iff the number is zero.
       Proposition 10-3.7(c) of [Gleason] p.
133.  (Contributed by NM,
       28-Jul-1999.)
 | 
                                
    | 
|   | 
| Theorem | absgt0api 11311 | 
The absolute value of a nonzero number is positive.  Remark in [Apostol]
       p. 363.  (Contributed by NM, 1-Oct-1999.)
 | 
                   #                | 
|   | 
| Theorem | absnegi 11312 | 
Absolute value of negative.  (Contributed by NM, 2-Aug-1999.)
 | 
                        
       | 
|   | 
| Theorem | abscji 11313 | 
The absolute value of a number and its conjugate are the same.
       Proposition 10-3.7(b) of [Gleason] p.
133.  (Contributed by NM,
       2-Oct-1999.)
 | 
                                  | 
|   | 
| Theorem | releabsi 11314 | 
The real part of a number is less than or equal to its absolute value.
       Proposition 10-3.7(d) of [Gleason] p.
133.  (Contributed by NM,
       2-Oct-1999.)
 | 
                     
         | 
|   | 
| Theorem | abssubi 11315 | 
Swapping order of subtraction doesn't change the absolute value.
       Example of [Apostol] p. 363. 
(Contributed by NM, 1-Oct-1999.)
 | 
                                                        | 
|   | 
| Theorem | absmuli 11316 | 
Absolute value distributes over multiplication.  Proposition 10-3.7(f)
       of [Gleason] p. 133.  (Contributed by
NM, 1-Oct-1999.)
 | 
                                                            | 
|   | 
| Theorem | sqabsaddi 11317 | 
Square of absolute value of sum.  Proposition 10-3.7(g) of [Gleason]
       p. 133.  (Contributed by NM, 2-Oct-1999.)
 | 
                                      
                                                            | 
|   | 
| Theorem | sqabssubi 11318 | 
Square of absolute value of difference.  (Contributed by Steve
       Rodriguez, 20-Jan-2007.)
 | 
                                                                                                  | 
|   | 
| Theorem | absdivapzi 11319 | 
Absolute value distributes over division.  (Contributed by Jim Kingdon,
       13-Aug-2021.)
 | 
                                 #                                    | 
|   | 
| Theorem | abstrii 11320 | 
Triangle inequality for absolute value.  Proposition 10-3.7(h) of
       [Gleason] p. 133.  This is Metamath 100
proof #91.  (Contributed by NM,
       2-Oct-1999.)
 | 
                                     
      
                 | 
|   | 
| Theorem | abs3difi 11321 | 
Absolute value of differences around common element.  (Contributed by
       NM, 2-Oct-1999.)
 | 
                                                                                      | 
|   | 
| Theorem | abs3lemi 11322 | 
Lemma involving absolute value of differences.  (Contributed by NM,
       2-Oct-1999.)
 | 
                                                                       
                                                       | 
|   | 
| Theorem | rpsqrtcld 11323 | 
The square root of a positive real is positive.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | sqrtgt0d 11324 | 
The square root of a positive real is positive.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | absnidd 11325 | 
A negative number is the negative of its own absolute value.
         (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                           | 
|   | 
| Theorem | leabsd 11326 | 
A real number is less than or equal to its absolute value.  (Contributed
       by Mario Carneiro, 29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | absred 11327 | 
Absolute value of a real number.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                              | 
|   | 
| Theorem | resqrtcld 11328 | 
The square root of a nonnegative real is a real.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                          | 
|   | 
| Theorem | sqrtmsqd 11329 | 
Square root of square.  (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                                | 
|   | 
| Theorem | sqrtsqd 11330 | 
Square root of square.  (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                              | 
|   | 
| Theorem | sqrtge0d 11331 | 
The square root of a nonnegative real is nonnegative.  (Contributed by
       Mario Carneiro, 29-May-2016.)
 | 
                                                          | 
|   | 
| Theorem | absidd 11332 | 
A nonnegative number is its own absolute value.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                          | 
|   | 
| Theorem | sqrtdivd 11333 | 
Square root distributes over division.  (Contributed by Mario
         Carneiro, 29-May-2016.)
 | 
                                                                                                  | 
|   | 
| Theorem | sqrtmuld 11334 | 
Square root distributes over multiplication.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                                                                      | 
|   | 
| Theorem | sqrtsq2d 11335 | 
Relationship between square root and squares.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                                                 
    
           | 
|   | 
| Theorem | sqrtled 11336 | 
Square root is monotonic.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                                                                                | 
|   | 
| Theorem | sqrtltd 11337 | 
Square root is strictly monotonic.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                                                                                | 
|   | 
| Theorem | sqr11d 11338 | 
The square root function is one-to-one.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                                                                                          | 
|   | 
| Theorem | absltd 11339 | 
Absolute value and 'less than' relation.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                               | 
|   | 
| Theorem | absled 11340 | 
Absolute value and 'less than or equal to' relation.  (Contributed by
       Mario Carneiro, 29-May-2016.)
 | 
                                                                               | 
|   | 
| Theorem | abssubge0d 11341 | 
Absolute value of a nonnegative difference.  (Contributed by Mario
         Carneiro, 29-May-2016.)
 | 
                                                                                          | 
|   | 
| Theorem | abssuble0d 11342 | 
Absolute value of a nonpositive difference.  (Contributed by Mario
         Carneiro, 29-May-2016.)
 | 
                                                                                          | 
|   | 
| Theorem | absdifltd 11343 | 
The absolute value of a difference and 'less than' relation.
       (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                                                              
                      | 
|   | 
| Theorem | absdifled 11344 | 
The absolute value of a difference and 'less than or equal to' relation.
       (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                                                              
                      | 
|   | 
| Theorem | icodiamlt 11345 | 
Two elements in a half-open interval have separation strictly less than
     the difference between the endpoints.  (Contributed by Stefan O'Rear,
     12-Sep-2014.)
 | 
                          
                                              | 
|   | 
| Theorem | abscld 11346 | 
Real closure of absolute value.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | absvalsqd 11347 | 
Square of value of absolute value function.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                    | 
|   | 
| Theorem | absvalsq2d 11348 | 
Square of value of absolute value function.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                | 
|   | 
| Theorem | absge0d 11349 | 
Absolute value is nonnegative.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | absval2d 11350 | 
Value of absolute value function.  Definition 10.36 of [Gleason] p. 133.
       (Contributed by Mario Carneiro, 29-May-2016.)
 | 
                                                                | 
|   | 
| Theorem | abs00d 11351 | 
The absolute value of a number is zero iff the number is zero.
         Proposition 10-3.7(c) of [Gleason] p.
133.  (Contributed by Mario
         Carneiro, 29-May-2016.)
 | 
                                                          | 
|   | 
| Theorem | absne0d 11352 | 
The absolute value of a number is zero iff the number is zero.
         Proposition 10-3.7(c) of [Gleason] p.
133.  (Contributed by Mario
         Carneiro, 29-May-2016.)
 | 
                                                          | 
|   | 
| Theorem | absrpclapd 11353 | 
The absolute value of a complex number apart from zero is a positive
         real.  (Contributed by Jim Kingdon, 13-Aug-2021.)
 | 
                             #                            | 
|   | 
| Theorem | absnegd 11354 | 
Absolute value of negative.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                           | 
|   | 
| Theorem | abscjd 11355 | 
The absolute value of a number and its conjugate are the same.
       Proposition 10-3.7(b) of [Gleason] p.
133.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                              | 
|   | 
| Theorem | releabsd 11356 | 
The real part of a number is less than or equal to its absolute value.
       Proposition 10-3.7(d) of [Gleason] p.
133.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                          | 
|   | 
| Theorem | absexpd 11357 | 
Absolute value of positive integer exponentiation.  (Contributed by
         Mario Carneiro, 29-May-2016.)
 | 
                                                                      | 
|   | 
| Theorem | abssubd 11358 | 
Swapping order of subtraction doesn't change the absolute value.
       Example of [Apostol] p. 363. 
(Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                                          | 
|   | 
| Theorem | absmuld 11359 | 
Absolute value distributes over multiplication.  Proposition 10-3.7(f)
       of [Gleason] p. 133.  (Contributed by
Mario Carneiro, 29-May-2016.)
 | 
                                                                              | 
|   | 
| Theorem | absdivapd 11360 | 
Absolute value distributes over division.  (Contributed by Jim
         Kingdon, 13-Aug-2021.)
 | 
                                                 #
                                                | 
|   | 
| Theorem | abstrid 11361 | 
Triangle inequality for absolute value.  Proposition 10-3.7(h) of
       [Gleason] p. 133.  (Contributed by Mario
Carneiro, 29-May-2016.)
 | 
                                                                     
         | 
|   | 
| Theorem | abs2difd 11362 | 
Difference of absolute values.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                              
                | 
|   | 
| Theorem | abs2dif2d 11363 | 
Difference of absolute values.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                                                     
         | 
|   | 
| Theorem | abs2difabsd 11364 | 
Absolute value of difference of absolute values.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                                  | 
|   | 
| Theorem | abs3difd 11365 | 
Absolute value of differences around common element.  (Contributed by
       Mario Carneiro, 29-May-2016.)
 | 
                                                                                                              | 
|   | 
| Theorem | abs3lemd 11366 | 
Lemma involving absolute value of differences.  (Contributed by Mario
       Carneiro, 29-May-2016.)
 | 
                                                                                                                                                                                | 
|   | 
| Theorem | qdenre 11367* | 
The rational numbers are dense in  : any real number can be
       approximated with arbitrary precision by a rational number.  For order
       theoretic density, see qbtwnre 10346.  (Contributed by BJ, 15-Oct-2021.)
 | 
                                             | 
|   | 
| 4.8.5  The maximum of two real
 numbers
 | 
|   | 
| Theorem | maxcom 11368 | 
The maximum of two reals is commutative.  Lemma 3.9 of [Geuvers], p. 10.
     (Contributed by Jim Kingdon, 21-Dec-2021.)
 | 
                              
        | 
|   | 
| Theorem | maxabsle 11369 | 
An upper bound for       .  (Contributed by Jim Kingdon,
     20-Dec-2021.)
 | 
                                  
                      | 
|   | 
| Theorem | maxleim 11370 | 
Value of maximum when we know which number is larger.  (Contributed by
       Jim Kingdon, 21-Dec-2021.)
 | 
                                                     | 
|   | 
| Theorem | maxabslemab 11371 | 
Lemma for maxabs 11374.  A variation of maxleim 11370- that is, if we know
       which of two real numbers is larger, we know the maximum of the two.
       (Contributed by Jim Kingdon, 21-Dec-2021.)
 | 
                                                                            
                          | 
|   | 
| Theorem | maxabslemlub 11372 | 
Lemma for maxabs 11374.  A least upper bound for       .
       (Contributed by Jim Kingdon, 20-Dec-2021.)
 | 
                                                                                                                  
                  | 
|   | 
| Theorem | maxabslemval 11373* | 
Lemma for maxabs 11374.  Value of the supremum.  (Contributed by
Jim
       Kingdon, 22-Dec-2021.)
 | 
                                 
                                 
                                         
                                               
                  | 
|   | 
| Theorem | maxabs 11374 | 
Maximum of two real numbers in terms of absolute value.  (Contributed by
       Jim Kingdon, 20-Dec-2021.)
 | 
                                                 
                      | 
|   | 
| Theorem | maxcl 11375 | 
The maximum of two real numbers is a real number.  (Contributed by Jim
     Kingdon, 22-Dec-2021.)
 | 
                                           | 
|   | 
| Theorem | maxle1 11376 | 
The maximum of two reals is no smaller than the first real.  Lemma 3.10 of
     [Geuvers], p. 10.  (Contributed by Jim
Kingdon, 21-Dec-2021.)
 | 
                                           | 
|   | 
| Theorem | maxle2 11377 | 
The maximum of two reals is no smaller than the second real.  Lemma 3.10
     of [Geuvers], p. 10.  (Contributed by Jim
Kingdon, 21-Dec-2021.)
 | 
                                           | 
|   | 
| Theorem | maxleast 11378 | 
The maximum of two reals is a least upper bound.  Lemma 3.11 of
       [Geuvers], p. 10.  (Contributed by Jim
Kingdon, 22-Dec-2021.)
 | 
                           
                                            | 
|   | 
| Theorem | maxleastb 11379 | 
Two ways of saying the maximum of two numbers is less than or equal to a
     third.  (Contributed by Jim Kingdon, 31-Jan-2022.)
 | 
                                   
                                    | 
|   | 
| Theorem | maxleastlt 11380 | 
The maximum as a least upper bound, in terms of less than.  (Contributed
     by Jim Kingdon, 9-Feb-2022.)
 | 
                          
                                               | 
|   | 
| Theorem | maxleb 11381 | 
Equivalence of  
and being equal to the maximum of two reals.  Lemma
     3.12 of [Geuvers], p. 10.  (Contributed by
Jim Kingdon, 21-Dec-2021.)
 | 
                                                     | 
|   | 
| Theorem | dfabsmax 11382 | 
Absolute value of a real number in terms of maximum.  Definition 3.13 of
     [Geuvers], p. 11.  (Contributed by BJ and
Jim Kingdon, 21-Dec-2021.)
 | 
                  
      
              | 
|   | 
| Theorem | maxltsup 11383 | 
Two ways of saying the maximum of two numbers is less than a third.
     (Contributed by Jim Kingdon, 10-Feb-2022.)
 | 
                                   
                                    | 
|   | 
| Theorem | max0addsup 11384 | 
The sum of the positive and negative part functions is the absolute value
     function over the reals.  (Contributed by Jim Kingdon, 30-Jan-2022.)
 | 
                 
                                          | 
|   | 
| Theorem | rexanre 11385* | 
Combine two different upper real properties into one.  (Contributed by
       Mario Carneiro, 8-May-2016.)
 | 
                            
                                   
                                         | 
|   | 
| Theorem | rexico 11386* | 
Restrict the base of an upper real quantifier to an upper real set.
       (Contributed by Mario Carneiro, 12-May-2016.)
 | 
                                          
                              
          | 
|   | 
| Theorem | maxclpr 11387 | 
The maximum of two real numbers is one of those numbers if and only if
     dichotomy (         
   ) holds.  For example, this
can be
     combined with zletric 9370 if one is dealing with integers, but real
number
     dichotomy in general does not follow from our axioms.  (Contributed by Jim
     Kingdon, 1-Feb-2022.)
 | 
                                                              
      | 
|   | 
| Theorem | rpmaxcl 11388 | 
The maximum of two positive real numbers is a positive real number.
     (Contributed by Jim Kingdon, 10-Nov-2023.)
 | 
                                           | 
|   | 
| Theorem | zmaxcl 11389 | 
The maximum of two integers is an integer.  (Contributed by Jim Kingdon,
     27-Sep-2022.)
 | 
                                           | 
|   | 
| Theorem | nn0maxcl 11390 | 
The maximum of two nonnegative integers is a nonnegative integer.
     (Contributed by Jim Kingdon, 28-Oct-2025.)
 | 
                                           | 
|   | 
| Theorem | 2zsupmax 11391 | 
Two ways to express the maximum of two integers.  Because order of
     integers is decidable, we have more flexibility than for real numbers.
     (Contributed by Jim Kingdon, 22-Jan-2023.)
 | 
                                           
        
     | 
|   | 
| Theorem | fimaxre2 11392* | 
A nonempty finite set of real numbers has an upper bound.  (Contributed
       by Jeff Madsen, 27-May-2011.)  (Revised by Mario Carneiro,
       13-Feb-2014.)
 | 
                                          | 
|   | 
| Theorem | negfi 11393* | 
The negation of a finite set of real numbers is finite.  (Contributed by
       AV, 9-Aug-2020.)
 | 
                                           | 
|   | 
| 4.8.6  The minimum of two real
 numbers
 | 
|   | 
| Theorem | mincom 11394 | 
The minimum of two reals is commutative.  (Contributed by Jim Kingdon,
     8-Feb-2021.)
 | 
  inf                  inf    
            | 
|   | 
| Theorem | minmax 11395 | 
Minimum expressed in terms of maximum.  (Contributed by Jim Kingdon,
       8-Feb-2021.)
 | 
                     inf                                       | 
|   | 
| Theorem | mincl 11396 | 
The minumum of two real numbers is a real number.  (Contributed by Jim
     Kingdon, 25-Apr-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | min1inf 11397 | 
The minimum of two numbers is less than or equal to the first.
     (Contributed by Jim Kingdon, 8-Feb-2021.)
 | 
                     inf                     | 
|   | 
| Theorem | min2inf 11398 | 
The minimum of two numbers is less than or equal to the second.
     (Contributed by Jim Kingdon, 9-Feb-2021.)
 | 
                     inf                     | 
|   | 
| Theorem | lemininf 11399 | 
Two ways of saying a number is less than or equal to the minimum of two
     others.  (Contributed by NM, 3-Aug-2007.)
 | 
                                  inf    
                  
              | 
|   | 
| Theorem | ltmininf 11400 | 
Two ways of saying a number is less than the minimum of two others.
     (Contributed by Jim Kingdon, 10-Feb-2022.)
 | 
                                  inf                                    |