ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum Unicode version

Theorem nfsum 11753
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  j  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11750 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
2 nfcv 2349 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2349 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3190 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
63nfcri 2343 . . . . . . . 8  |-  F/ x  j  e.  A
76nfdc 1683 . . . . . . 7  |-  F/ xDECID  j  e.  A
84, 7nfralxy 2545 . . . . . 6  |-  F/ x A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A
9 nfcv 2349 . . . . . . . 8  |-  F/_ x m
10 nfcv 2349 . . . . . . . 8  |-  F/_ x  +
113nfcri 2343 . . . . . . . . . 10  |-  F/ x  n  e.  A
12 nfcv 2349 . . . . . . . . . . 11  |-  F/_ x n
13 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
1412, 13nfcsb 3135 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
15 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
0
1611, 14, 15nfif 3604 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
172, 16nfmpt 4147 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
189, 10, 17nfseq 10634 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
19 nfcv 2349 . . . . . . 7  |-  F/_ x  ~~>
20 nfcv 2349 . . . . . . 7  |-  F/_ x
z
2118, 19, 20nfbr 4101 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z
225, 8, 21nf3an 1590 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
232, 22nfrexw 2546 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
24 nfcv 2349 . . . . 5  |-  F/_ x NN
25 nfcv 2349 . . . . . . . 8  |-  F/_ x
f
26 nfcv 2349 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2725, 26, 3nff1o 5537 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
28 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
1
29 nfv 1552 . . . . . . . . . . . 12  |-  F/ x  n  <_  m
30 nfcv 2349 . . . . . . . . . . . . 13  |-  F/_ x
( f `  n
)
3130, 13nfcsb 3135 . . . . . . . . . . . 12  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3229, 31, 15nfif 3604 . . . . . . . . . . 11  |-  F/_ x if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 )
3324, 32nfmpt 4147 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )
3428, 10, 33nfseq 10634 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
3534, 9nffv 5604 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
3635nfeq2 2361 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
3727, 36nfan 1589 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3837nfex 1661 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3924, 38nfrexw 2546 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4023, 39nfor 1598 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
4140nfiotaw 5250 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
421, 41nfcxfr 2346 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   F/_wnfc 2336   A.wral 2485   E.wrex 2486   [_csb 3097    C_ wss 3170   ifcif 3575   class class class wbr 4054    |-> cmpt 4116   iotacio 5244   -1-1-onto->wf1o 5284   ` cfv 5285  (class class class)co 5962   0cc0 7955   1c1 7956    + caddc 7958    <_ cle 8138   NNcn 9066   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160    seqcseq 10624    ~~> cli 11674   sum_csu 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-recs 6409  df-frec 6495  df-seqfrec 10625  df-sumdc 11750
This theorem is referenced by:  fsum2dlemstep  11830  fisumcom2  11834  fsumiun  11873  fsumcncntop  15124  dvmptfsum  15282
  Copyright terms: Public domain W3C validator