| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsum | Unicode version | ||
| Description: Bound-variable hypothesis
builder for sum: if |
| Ref | Expression |
|---|---|
| nfsum.1 |
|
| nfsum.2 |
|
| Ref | Expression |
|---|---|
| nfsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sumdc 11750 |
. 2
| |
| 2 | nfcv 2349 |
. . . . 5
| |
| 3 | nfsum.1 |
. . . . . . 7
| |
| 4 | nfcv 2349 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3190 |
. . . . . 6
|
| 6 | 3 | nfcri 2343 |
. . . . . . . 8
|
| 7 | 6 | nfdc 1683 |
. . . . . . 7
|
| 8 | 4, 7 | nfralxy 2545 |
. . . . . 6
|
| 9 | nfcv 2349 |
. . . . . . . 8
| |
| 10 | nfcv 2349 |
. . . . . . . 8
| |
| 11 | 3 | nfcri 2343 |
. . . . . . . . . 10
|
| 12 | nfcv 2349 |
. . . . . . . . . . 11
| |
| 13 | nfsum.2 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | nfcsb 3135 |
. . . . . . . . . 10
|
| 15 | nfcv 2349 |
. . . . . . . . . 10
| |
| 16 | 11, 14, 15 | nfif 3604 |
. . . . . . . . 9
|
| 17 | 2, 16 | nfmpt 4147 |
. . . . . . . 8
|
| 18 | 9, 10, 17 | nfseq 10634 |
. . . . . . 7
|
| 19 | nfcv 2349 |
. . . . . . 7
| |
| 20 | nfcv 2349 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | nfbr 4101 |
. . . . . 6
|
| 22 | 5, 8, 21 | nf3an 1590 |
. . . . 5
|
| 23 | 2, 22 | nfrexw 2546 |
. . . 4
|
| 24 | nfcv 2349 |
. . . . 5
| |
| 25 | nfcv 2349 |
. . . . . . . 8
| |
| 26 | nfcv 2349 |
. . . . . . . 8
| |
| 27 | 25, 26, 3 | nff1o 5537 |
. . . . . . 7
|
| 28 | nfcv 2349 |
. . . . . . . . . 10
| |
| 29 | nfv 1552 |
. . . . . . . . . . . 12
| |
| 30 | nfcv 2349 |
. . . . . . . . . . . . 13
| |
| 31 | 30, 13 | nfcsb 3135 |
. . . . . . . . . . . 12
|
| 32 | 29, 31, 15 | nfif 3604 |
. . . . . . . . . . 11
|
| 33 | 24, 32 | nfmpt 4147 |
. . . . . . . . . 10
|
| 34 | 28, 10, 33 | nfseq 10634 |
. . . . . . . . 9
|
| 35 | 34, 9 | nffv 5604 |
. . . . . . . 8
|
| 36 | 35 | nfeq2 2361 |
. . . . . . 7
|
| 37 | 27, 36 | nfan 1589 |
. . . . . 6
|
| 38 | 37 | nfex 1661 |
. . . . 5
|
| 39 | 24, 38 | nfrexw 2546 |
. . . 4
|
| 40 | 23, 39 | nfor 1598 |
. . 3
|
| 41 | 40 | nfiotaw 5250 |
. 2
|
| 42 | 1, 41 | nfcxfr 2346 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-recs 6409 df-frec 6495 df-seqfrec 10625 df-sumdc 11750 |
| This theorem is referenced by: fsum2dlemstep 11830 fisumcom2 11834 fsumiun 11873 fsumcncntop 15124 dvmptfsum 15282 |
| Copyright terms: Public domain | W3C validator |