ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum Unicode version

Theorem nfsum 11119
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  j  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11116 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
2 nfcv 2279 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2279 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3085 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
63nfcri 2273 . . . . . . . 8  |-  F/ x  j  e.  A
76nfdc 1637 . . . . . . 7  |-  F/ xDECID  j  e.  A
84, 7nfralxy 2469 . . . . . 6  |-  F/ x A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A
9 nfcv 2279 . . . . . . . 8  |-  F/_ x m
10 nfcv 2279 . . . . . . . 8  |-  F/_ x  +
113nfcri 2273 . . . . . . . . . 10  |-  F/ x  n  e.  A
12 nfcv 2279 . . . . . . . . . . 11  |-  F/_ x n
13 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
1412, 13nfcsb 3032 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
15 nfcv 2279 . . . . . . . . . 10  |-  F/_ x
0
1611, 14, 15nfif 3495 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
172, 16nfmpt 4015 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
189, 10, 17nfseq 10221 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
19 nfcv 2279 . . . . . . 7  |-  F/_ x  ~~>
20 nfcv 2279 . . . . . . 7  |-  F/_ x
z
2118, 19, 20nfbr 3969 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z
225, 8, 21nf3an 1545 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
232, 22nfrexxy 2470 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
24 nfcv 2279 . . . . 5  |-  F/_ x NN
25 nfcv 2279 . . . . . . . 8  |-  F/_ x
f
26 nfcv 2279 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2725, 26, 3nff1o 5358 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
28 nfcv 2279 . . . . . . . . . 10  |-  F/_ x
1
29 nfv 1508 . . . . . . . . . . . 12  |-  F/ x  n  <_  m
30 nfcv 2279 . . . . . . . . . . . . 13  |-  F/_ x
( f `  n
)
3130, 13nfcsb 3032 . . . . . . . . . . . 12  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3229, 31, 15nfif 3495 . . . . . . . . . . 11  |-  F/_ x if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 )
3324, 32nfmpt 4015 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )
3428, 10, 33nfseq 10221 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
3534, 9nffv 5424 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
3635nfeq2 2291 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
3727, 36nfan 1544 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3837nfex 1616 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3924, 38nfrexxy 2470 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4023, 39nfor 1553 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
4140nfiotaw 5087 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
421, 41nfcxfr 2276 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   F/_wnfc 2266   A.wral 2414   E.wrex 2415   [_csb 2998    C_ wss 3066   ifcif 3469   class class class wbr 3924    |-> cmpt 3984   iotacio 5081   -1-1-onto->wf1o 5117   ` cfv 5118  (class class class)co 5767   0cc0 7613   1c1 7614    + caddc 7616    <_ cle 7794   NNcn 8713   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    seqcseq 10211    ~~> cli 11040   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-recs 6195  df-frec 6281  df-seqfrec 10212  df-sumdc 11116
This theorem is referenced by:  fsum2dlemstep  11196  fisumcom2  11200  fsumiun  11239  fsumcncntop  12714
  Copyright terms: Public domain W3C validator