ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum Unicode version

Theorem nfsum 11367
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  j  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11364 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
2 nfcv 2319 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2319 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3150 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
63nfcri 2313 . . . . . . . 8  |-  F/ x  j  e.  A
76nfdc 1659 . . . . . . 7  |-  F/ xDECID  j  e.  A
84, 7nfralxy 2515 . . . . . 6  |-  F/ x A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A
9 nfcv 2319 . . . . . . . 8  |-  F/_ x m
10 nfcv 2319 . . . . . . . 8  |-  F/_ x  +
113nfcri 2313 . . . . . . . . . 10  |-  F/ x  n  e.  A
12 nfcv 2319 . . . . . . . . . . 11  |-  F/_ x n
13 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
1412, 13nfcsb 3096 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
15 nfcv 2319 . . . . . . . . . 10  |-  F/_ x
0
1611, 14, 15nfif 3564 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
172, 16nfmpt 4097 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
189, 10, 17nfseq 10457 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )
19 nfcv 2319 . . . . . . 7  |-  F/_ x  ~~>
20 nfcv 2319 . . . . . . 7  |-  F/_ x
z
2118, 19, 20nfbr 4051 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z
225, 8, 21nf3an 1566 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
232, 22nfrexxy 2516 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )
24 nfcv 2319 . . . . 5  |-  F/_ x NN
25 nfcv 2319 . . . . . . . 8  |-  F/_ x
f
26 nfcv 2319 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2725, 26, 3nff1o 5461 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
28 nfcv 2319 . . . . . . . . . 10  |-  F/_ x
1
29 nfv 1528 . . . . . . . . . . . 12  |-  F/ x  n  <_  m
30 nfcv 2319 . . . . . . . . . . . . 13  |-  F/_ x
( f `  n
)
3130, 13nfcsb 3096 . . . . . . . . . . . 12  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3229, 31, 15nfif 3564 . . . . . . . . . . 11  |-  F/_ x if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 )
3324, 32nfmpt 4097 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )
3428, 10, 33nfseq 10457 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )
3534, 9nffv 5527 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)
3635nfeq2 2331 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)
3727, 36nfan 1565 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3837nfex 1637 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
3924, 38nfrexxy 2516 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )
4023, 39nfor 1574 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
4140nfiotaw 5184 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
421, 41nfcxfr 2316 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   F/_wnfc 2306   A.wral 2455   E.wrex 2456   [_csb 3059    C_ wss 3131   ifcif 3536   class class class wbr 4005    |-> cmpt 4066   iotacio 5178   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    <_ cle 7995   NNcn 8921   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447    ~~> cli 11288   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-seqfrec 10448  df-sumdc 11364
This theorem is referenced by:  fsum2dlemstep  11444  fisumcom2  11448  fsumiun  11487  fsumcncntop  14141
  Copyright terms: Public domain W3C validator