| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsum | Unicode version | ||
| Description: Bound-variable hypothesis
builder for sum: if |
| Ref | Expression |
|---|---|
| nfsum.1 |
|
| nfsum.2 |
|
| Ref | Expression |
|---|---|
| nfsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sumdc 11860 |
. 2
| |
| 2 | nfcv 2372 |
. . . . 5
| |
| 3 | nfsum.1 |
. . . . . . 7
| |
| 4 | nfcv 2372 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3217 |
. . . . . 6
|
| 6 | 3 | nfcri 2366 |
. . . . . . . 8
|
| 7 | 6 | nfdc 1705 |
. . . . . . 7
|
| 8 | 4, 7 | nfralxy 2568 |
. . . . . 6
|
| 9 | nfcv 2372 |
. . . . . . . 8
| |
| 10 | nfcv 2372 |
. . . . . . . 8
| |
| 11 | 3 | nfcri 2366 |
. . . . . . . . . 10
|
| 12 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 13 | nfsum.2 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | nfcsb 3162 |
. . . . . . . . . 10
|
| 15 | nfcv 2372 |
. . . . . . . . . 10
| |
| 16 | 11, 14, 15 | nfif 3631 |
. . . . . . . . 9
|
| 17 | 2, 16 | nfmpt 4175 |
. . . . . . . 8
|
| 18 | 9, 10, 17 | nfseq 10674 |
. . . . . . 7
|
| 19 | nfcv 2372 |
. . . . . . 7
| |
| 20 | nfcv 2372 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | nfbr 4129 |
. . . . . 6
|
| 22 | 5, 8, 21 | nf3an 1612 |
. . . . 5
|
| 23 | 2, 22 | nfrexw 2569 |
. . . 4
|
| 24 | nfcv 2372 |
. . . . 5
| |
| 25 | nfcv 2372 |
. . . . . . . 8
| |
| 26 | nfcv 2372 |
. . . . . . . 8
| |
| 27 | 25, 26, 3 | nff1o 5569 |
. . . . . . 7
|
| 28 | nfcv 2372 |
. . . . . . . . . 10
| |
| 29 | nfv 1574 |
. . . . . . . . . . . 12
| |
| 30 | nfcv 2372 |
. . . . . . . . . . . . 13
| |
| 31 | 30, 13 | nfcsb 3162 |
. . . . . . . . . . . 12
|
| 32 | 29, 31, 15 | nfif 3631 |
. . . . . . . . . . 11
|
| 33 | 24, 32 | nfmpt 4175 |
. . . . . . . . . 10
|
| 34 | 28, 10, 33 | nfseq 10674 |
. . . . . . . . 9
|
| 35 | 34, 9 | nffv 5636 |
. . . . . . . 8
|
| 36 | 35 | nfeq2 2384 |
. . . . . . 7
|
| 37 | 27, 36 | nfan 1611 |
. . . . . 6
|
| 38 | 37 | nfex 1683 |
. . . . 5
|
| 39 | 24, 38 | nfrexw 2569 |
. . . 4
|
| 40 | 23, 39 | nfor 1620 |
. . 3
|
| 41 | 40 | nfiotaw 5281 |
. 2
|
| 42 | 1, 41 | nfcxfr 2369 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 df-sumdc 11860 |
| This theorem is referenced by: fsum2dlemstep 11940 fisumcom2 11944 fsumiun 11983 fsumcncntop 15235 dvmptfsum 15393 |
| Copyright terms: Public domain | W3C validator |