| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsum | Unicode version | ||
| Description: Bound-variable hypothesis
builder for sum: if |
| Ref | Expression |
|---|---|
| nfsum.1 |
|
| nfsum.2 |
|
| Ref | Expression |
|---|---|
| nfsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sumdc 11607 |
. 2
| |
| 2 | nfcv 2347 |
. . . . 5
| |
| 3 | nfsum.1 |
. . . . . . 7
| |
| 4 | nfcv 2347 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3185 |
. . . . . 6
|
| 6 | 3 | nfcri 2341 |
. . . . . . . 8
|
| 7 | 6 | nfdc 1681 |
. . . . . . 7
|
| 8 | 4, 7 | nfralxy 2543 |
. . . . . 6
|
| 9 | nfcv 2347 |
. . . . . . . 8
| |
| 10 | nfcv 2347 |
. . . . . . . 8
| |
| 11 | 3 | nfcri 2341 |
. . . . . . . . . 10
|
| 12 | nfcv 2347 |
. . . . . . . . . . 11
| |
| 13 | nfsum.2 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | nfcsb 3130 |
. . . . . . . . . 10
|
| 15 | nfcv 2347 |
. . . . . . . . . 10
| |
| 16 | 11, 14, 15 | nfif 3598 |
. . . . . . . . 9
|
| 17 | 2, 16 | nfmpt 4135 |
. . . . . . . 8
|
| 18 | 9, 10, 17 | nfseq 10600 |
. . . . . . 7
|
| 19 | nfcv 2347 |
. . . . . . 7
| |
| 20 | nfcv 2347 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | nfbr 4089 |
. . . . . 6
|
| 22 | 5, 8, 21 | nf3an 1588 |
. . . . 5
|
| 23 | 2, 22 | nfrexw 2544 |
. . . 4
|
| 24 | nfcv 2347 |
. . . . 5
| |
| 25 | nfcv 2347 |
. . . . . . . 8
| |
| 26 | nfcv 2347 |
. . . . . . . 8
| |
| 27 | 25, 26, 3 | nff1o 5519 |
. . . . . . 7
|
| 28 | nfcv 2347 |
. . . . . . . . . 10
| |
| 29 | nfv 1550 |
. . . . . . . . . . . 12
| |
| 30 | nfcv 2347 |
. . . . . . . . . . . . 13
| |
| 31 | 30, 13 | nfcsb 3130 |
. . . . . . . . . . . 12
|
| 32 | 29, 31, 15 | nfif 3598 |
. . . . . . . . . . 11
|
| 33 | 24, 32 | nfmpt 4135 |
. . . . . . . . . 10
|
| 34 | 28, 10, 33 | nfseq 10600 |
. . . . . . . . 9
|
| 35 | 34, 9 | nffv 5585 |
. . . . . . . 8
|
| 36 | 35 | nfeq2 2359 |
. . . . . . 7
|
| 37 | 27, 36 | nfan 1587 |
. . . . . 6
|
| 38 | 37 | nfex 1659 |
. . . . 5
|
| 39 | 24, 38 | nfrexw 2544 |
. . . 4
|
| 40 | 23, 39 | nfor 1596 |
. . 3
|
| 41 | 40 | nfiotaw 5235 |
. 2
|
| 42 | 1, 41 | nfcxfr 2344 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-seqfrec 10591 df-sumdc 11607 |
| This theorem is referenced by: fsum2dlemstep 11687 fisumcom2 11691 fsumiun 11730 fsumcncntop 14981 dvmptfsum 15139 |
| Copyright terms: Public domain | W3C validator |