ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc GIF version

Definition df-sumdc 11873
Description: Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 12041). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑗   𝐴,𝑓,𝑚,𝑛,𝑥,𝑗   𝐵,𝑓,𝑚,𝑛,𝑥,𝑗
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3csu 11872 . 2 class Σ𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1394 . . . . . . . 8 class 𝑚
7 cuz 9730 . . . . . . . 8 class
86, 7cfv 5318 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3197 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 vj . . . . . . . . . 10 setvar 𝑗
1110cv 1394 . . . . . . . . 9 class 𝑗
1211, 1wcel 2200 . . . . . . . 8 wff 𝑗𝐴
1312wdc 839 . . . . . . 7 wff DECID 𝑗𝐴
1413, 10, 8wral 2508 . . . . . 6 wff 𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
15 caddc 8010 . . . . . . . 8 class +
16 vn . . . . . . . . 9 setvar 𝑛
17 cz 9454 . . . . . . . . 9 class
1816cv 1394 . . . . . . . . . . 11 class 𝑛
1918, 1wcel 2200 . . . . . . . . . 10 wff 𝑛𝐴
203, 18, 2csb 3124 . . . . . . . . . 10 class 𝑛 / 𝑘𝐵
21 cc0 8007 . . . . . . . . . 10 class 0
2219, 20, 21cif 3602 . . . . . . . . 9 class if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
2316, 17, 22cmpt 4145 . . . . . . . 8 class (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
2415, 23, 6cseq 10677 . . . . . . 7 class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
25 vx . . . . . . . 8 setvar 𝑥
2625cv 1394 . . . . . . 7 class 𝑥
27 cli 11797 . . . . . . 7 class
2824, 26, 27wbr 4083 . . . . . 6 wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
299, 14, 28w3a 1002 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
3029, 5, 17wrex 2509 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
31 c1 8008 . . . . . . . . 9 class 1
32 cfz 10212 . . . . . . . . 9 class ...
3331, 6, 32co 6007 . . . . . . . 8 class (1...𝑚)
34 vf . . . . . . . . 9 setvar 𝑓
3534cv 1394 . . . . . . . 8 class 𝑓
3633, 1, 35wf1o 5317 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
37 cn 9118 . . . . . . . . . . 11 class
38 cle 8190 . . . . . . . . . . . . 13 class
3918, 6, 38wbr 4083 . . . . . . . . . . . 12 wff 𝑛𝑚
4018, 35cfv 5318 . . . . . . . . . . . . 13 class (𝑓𝑛)
413, 40, 2csb 3124 . . . . . . . . . . . 12 class (𝑓𝑛) / 𝑘𝐵
4239, 41, 21cif 3602 . . . . . . . . . . 11 class if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
4316, 37, 42cmpt 4145 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
4415, 43, 31cseq 10677 . . . . . . . . 9 class seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
456, 44cfv 5318 . . . . . . . 8 class (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4626, 45wceq 1395 . . . . . . 7 wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4736, 46wa 104 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4847, 34wex 1538 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4948, 5, 37wrex 2509 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
5030, 49wo 713 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
5150, 25cio 5276 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
524, 51wceq 1395 1 wff Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11874  nfsum1  11875  nfsum  11876  sumeq2  11878  cbvsum  11879  zsumdc  11903  fsum3  11906
  Copyright terms: Public domain W3C validator