Detailed syntax breakdown of Definition df-sumdc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class 𝐴 | 
| 2 |   | cB | 
. . 3
class 𝐵 | 
| 3 |   | vk | 
. . 3
setvar 𝑘 | 
| 4 | 1, 2, 3 | csu 11518 | 
. 2
class
Σ𝑘 ∈
𝐴 𝐵 | 
| 5 |   | vm | 
. . . . . . . . 9
setvar 𝑚 | 
| 6 | 5 | cv 1363 | 
. . . . . . . 8
class 𝑚 | 
| 7 |   | cuz 9601 | 
. . . . . . . 8
class
ℤ≥ | 
| 8 | 6, 7 | cfv 5258 | 
. . . . . . 7
class
(ℤ≥‘𝑚) | 
| 9 | 1, 8 | wss 3157 | 
. . . . . 6
wff 𝐴 ⊆
(ℤ≥‘𝑚) | 
| 10 |   | vj | 
. . . . . . . . . 10
setvar 𝑗 | 
| 11 | 10 | cv 1363 | 
. . . . . . . . 9
class 𝑗 | 
| 12 | 11, 1 | wcel 2167 | 
. . . . . . . 8
wff 𝑗 ∈ 𝐴 | 
| 13 | 12 | wdc 835 | 
. . . . . . 7
wff
DECID 𝑗 ∈ 𝐴 | 
| 14 | 13, 10, 8 | wral 2475 | 
. . . . . 6
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 | 
| 15 |   | caddc 7882 | 
. . . . . . . 8
class 
+ | 
| 16 |   | vn | 
. . . . . . . . 9
setvar 𝑛 | 
| 17 |   | cz 9326 | 
. . . . . . . . 9
class
ℤ | 
| 18 | 16 | cv 1363 | 
. . . . . . . . . . 11
class 𝑛 | 
| 19 | 18, 1 | wcel 2167 | 
. . . . . . . . . 10
wff 𝑛 ∈ 𝐴 | 
| 20 | 3, 18, 2 | csb 3084 | 
. . . . . . . . . 10
class
⦋𝑛 /
𝑘⦌𝐵 | 
| 21 |   | cc0 7879 | 
. . . . . . . . . 10
class
0 | 
| 22 | 19, 20, 21 | cif 3561 | 
. . . . . . . . 9
class if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) | 
| 23 | 16, 17, 22 | cmpt 4094 | 
. . . . . . . 8
class (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) | 
| 24 | 15, 23, 6 | cseq 10539 | 
. . . . . . 7
class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) | 
| 25 |   | vx | 
. . . . . . . 8
setvar 𝑥 | 
| 26 | 25 | cv 1363 | 
. . . . . . 7
class 𝑥 | 
| 27 |   | cli 11443 | 
. . . . . . 7
class 
⇝ | 
| 28 | 24, 26, 27 | wbr 4033 | 
. . . . . 6
wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 | 
| 29 | 9, 14, 28 | w3a 980 | 
. . . . 5
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) | 
| 30 | 29, 5, 17 | wrex 2476 | 
. . . 4
wff
∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) | 
| 31 |   | c1 7880 | 
. . . . . . . . 9
class
1 | 
| 32 |   | cfz 10083 | 
. . . . . . . . 9
class
... | 
| 33 | 31, 6, 32 | co 5922 | 
. . . . . . . 8
class
(1...𝑚) | 
| 34 |   | vf | 
. . . . . . . . 9
setvar 𝑓 | 
| 35 | 34 | cv 1363 | 
. . . . . . . 8
class 𝑓 | 
| 36 | 33, 1, 35 | wf1o 5257 | 
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 | 
| 37 |   | cn 8990 | 
. . . . . . . . . . 11
class
ℕ | 
| 38 |   | cle 8062 | 
. . . . . . . . . . . . 13
class 
≤ | 
| 39 | 18, 6, 38 | wbr 4033 | 
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 | 
| 40 | 18, 35 | cfv 5258 | 
. . . . . . . . . . . . 13
class (𝑓‘𝑛) | 
| 41 | 3, 40, 2 | csb 3084 | 
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 | 
| 42 | 39, 41, 21 | cif 3561 | 
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) | 
| 43 | 16, 37, 42 | cmpt 4094 | 
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) | 
| 44 | 15, 43, 31 | cseq 10539 | 
. . . . . . . . 9
class seq1( + ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) | 
| 45 | 6, 44 | cfv 5258 | 
. . . . . . . 8
class (seq1( +
, (𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) | 
| 46 | 26, 45 | wceq 1364 | 
. . . . . . 7
wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) | 
| 47 | 36, 46 | wa 104 | 
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) | 
| 48 | 47, 34 | wex 1506 | 
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) | 
| 49 | 48, 5, 37 | wrex 2476 | 
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) | 
| 50 | 30, 49 | wo 709 | 
. . 3
wff
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) | 
| 51 | 50, 25 | cio 5217 | 
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) | 
| 52 | 4, 51 | wceq 1364 | 
1
wff
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |