Detailed syntax breakdown of Definition df-sumdc
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | 1, 2, 3 | csu 11290 |
. 2
class
Σ𝑘 ∈
𝐴 𝐵 |
5 | | vm |
. . . . . . . . 9
setvar 𝑚 |
6 | 5 | cv 1342 |
. . . . . . . 8
class 𝑚 |
7 | | cuz 9462 |
. . . . . . . 8
class
ℤ≥ |
8 | 6, 7 | cfv 5187 |
. . . . . . 7
class
(ℤ≥‘𝑚) |
9 | 1, 8 | wss 3115 |
. . . . . 6
wff 𝐴 ⊆
(ℤ≥‘𝑚) |
10 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
11 | 10 | cv 1342 |
. . . . . . . . 9
class 𝑗 |
12 | 11, 1 | wcel 2136 |
. . . . . . . 8
wff 𝑗 ∈ 𝐴 |
13 | 12 | wdc 824 |
. . . . . . 7
wff
DECID 𝑗 ∈ 𝐴 |
14 | 13, 10, 8 | wral 2443 |
. . . . . 6
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
15 | | caddc 7752 |
. . . . . . . 8
class
+ |
16 | | vn |
. . . . . . . . 9
setvar 𝑛 |
17 | | cz 9187 |
. . . . . . . . 9
class
ℤ |
18 | 16 | cv 1342 |
. . . . . . . . . . 11
class 𝑛 |
19 | 18, 1 | wcel 2136 |
. . . . . . . . . 10
wff 𝑛 ∈ 𝐴 |
20 | 3, 18, 2 | csb 3044 |
. . . . . . . . . 10
class
⦋𝑛 /
𝑘⦌𝐵 |
21 | | cc0 7749 |
. . . . . . . . . 10
class
0 |
22 | 19, 20, 21 | cif 3519 |
. . . . . . . . 9
class if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
23 | 16, 17, 22 | cmpt 4042 |
. . . . . . . 8
class (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
24 | 15, 23, 6 | cseq 10376 |
. . . . . . 7
class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
25 | | vx |
. . . . . . . 8
setvar 𝑥 |
26 | 25 | cv 1342 |
. . . . . . 7
class 𝑥 |
27 | | cli 11215 |
. . . . . . 7
class
⇝ |
28 | 24, 26, 27 | wbr 3981 |
. . . . . 6
wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 |
29 | 9, 14, 28 | w3a 968 |
. . . . 5
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
30 | 29, 5, 17 | wrex 2444 |
. . . 4
wff
∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) |
31 | | c1 7750 |
. . . . . . . . 9
class
1 |
32 | | cfz 9940 |
. . . . . . . . 9
class
... |
33 | 31, 6, 32 | co 5841 |
. . . . . . . 8
class
(1...𝑚) |
34 | | vf |
. . . . . . . . 9
setvar 𝑓 |
35 | 34 | cv 1342 |
. . . . . . . 8
class 𝑓 |
36 | 33, 1, 35 | wf1o 5186 |
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 |
37 | | cn 8853 |
. . . . . . . . . . 11
class
ℕ |
38 | | cle 7930 |
. . . . . . . . . . . . 13
class
≤ |
39 | 18, 6, 38 | wbr 3981 |
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 |
40 | 18, 35 | cfv 5187 |
. . . . . . . . . . . . 13
class (𝑓‘𝑛) |
41 | 3, 40, 2 | csb 3044 |
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
42 | 39, 41, 21 | cif 3519 |
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) |
43 | 16, 37, 42 | cmpt 4042 |
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
44 | 15, 43, 31 | cseq 10376 |
. . . . . . . . 9
class seq1( + ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0))) |
45 | 6, 44 | cfv 5187 |
. . . . . . . 8
class (seq1( +
, (𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
46 | 26, 45 | wceq 1343 |
. . . . . . 7
wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚) |
47 | 36, 46 | wa 103 |
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
48 | 47, 34 | wex 1480 |
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
49 | 48, 5, 37 | wrex 2444 |
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)) |
50 | 30, 49 | wo 698 |
. . 3
wff
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚))) |
51 | 50, 25 | cio 5150 |
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
52 | 4, 51 | wceq 1343 |
1
wff
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |