ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc GIF version

Definition df-sumdc 11317
Description: Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11485). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑗   𝐴,𝑓,𝑚,𝑛,𝑥,𝑗   𝐵,𝑓,𝑚,𝑛,𝑥,𝑗
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3csu 11316 . 2 class Σ𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1347 . . . . . . . 8 class 𝑚
7 cuz 9487 . . . . . . . 8 class
86, 7cfv 5198 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3121 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 vj . . . . . . . . . 10 setvar 𝑗
1110cv 1347 . . . . . . . . 9 class 𝑗
1211, 1wcel 2141 . . . . . . . 8 wff 𝑗𝐴
1312wdc 829 . . . . . . 7 wff DECID 𝑗𝐴
1413, 10, 8wral 2448 . . . . . 6 wff 𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
15 caddc 7777 . . . . . . . 8 class +
16 vn . . . . . . . . 9 setvar 𝑛
17 cz 9212 . . . . . . . . 9 class
1816cv 1347 . . . . . . . . . . 11 class 𝑛
1918, 1wcel 2141 . . . . . . . . . 10 wff 𝑛𝐴
203, 18, 2csb 3049 . . . . . . . . . 10 class 𝑛 / 𝑘𝐵
21 cc0 7774 . . . . . . . . . 10 class 0
2219, 20, 21cif 3526 . . . . . . . . 9 class if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
2316, 17, 22cmpt 4050 . . . . . . . 8 class (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
2415, 23, 6cseq 10401 . . . . . . 7 class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
25 vx . . . . . . . 8 setvar 𝑥
2625cv 1347 . . . . . . 7 class 𝑥
27 cli 11241 . . . . . . 7 class
2824, 26, 27wbr 3989 . . . . . 6 wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
299, 14, 28w3a 973 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
3029, 5, 17wrex 2449 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
31 c1 7775 . . . . . . . . 9 class 1
32 cfz 9965 . . . . . . . . 9 class ...
3331, 6, 32co 5853 . . . . . . . 8 class (1...𝑚)
34 vf . . . . . . . . 9 setvar 𝑓
3534cv 1347 . . . . . . . 8 class 𝑓
3633, 1, 35wf1o 5197 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
37 cn 8878 . . . . . . . . . . 11 class
38 cle 7955 . . . . . . . . . . . . 13 class
3918, 6, 38wbr 3989 . . . . . . . . . . . 12 wff 𝑛𝑚
4018, 35cfv 5198 . . . . . . . . . . . . 13 class (𝑓𝑛)
413, 40, 2csb 3049 . . . . . . . . . . . 12 class (𝑓𝑛) / 𝑘𝐵
4239, 41, 21cif 3526 . . . . . . . . . . 11 class if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
4316, 37, 42cmpt 4050 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
4415, 43, 31cseq 10401 . . . . . . . . 9 class seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
456, 44cfv 5198 . . . . . . . 8 class (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4626, 45wceq 1348 . . . . . . 7 wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4736, 46wa 103 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4847, 34wex 1485 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4948, 5, 37wrex 2449 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
5030, 49wo 703 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
5150, 25cio 5158 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
524, 51wceq 1348 1 wff Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11318  nfsum1  11319  nfsum  11320  sumeq2  11322  cbvsum  11323  zsumdc  11347  fsum3  11350
  Copyright terms: Public domain W3C validator