ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sumdc GIF version

Definition df-sumdc 11304
Description: Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11472). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Assertion
Ref Expression
df-sumdc Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑗   𝐴,𝑓,𝑚,𝑛,𝑥,𝑗   𝐵,𝑓,𝑚,𝑛,𝑥,𝑗
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-sumdc
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3csu 11303 . 2 class Σ𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1347 . . . . . . . 8 class 𝑚
7 cuz 9474 . . . . . . . 8 class
86, 7cfv 5196 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3121 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 vj . . . . . . . . . 10 setvar 𝑗
1110cv 1347 . . . . . . . . 9 class 𝑗
1211, 1wcel 2141 . . . . . . . 8 wff 𝑗𝐴
1312wdc 829 . . . . . . 7 wff DECID 𝑗𝐴
1413, 10, 8wral 2448 . . . . . 6 wff 𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
15 caddc 7764 . . . . . . . 8 class +
16 vn . . . . . . . . 9 setvar 𝑛
17 cz 9199 . . . . . . . . 9 class
1816cv 1347 . . . . . . . . . . 11 class 𝑛
1918, 1wcel 2141 . . . . . . . . . 10 wff 𝑛𝐴
203, 18, 2csb 3049 . . . . . . . . . 10 class 𝑛 / 𝑘𝐵
21 cc0 7761 . . . . . . . . . 10 class 0
2219, 20, 21cif 3525 . . . . . . . . 9 class if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
2316, 17, 22cmpt 4048 . . . . . . . 8 class (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
2415, 23, 6cseq 10388 . . . . . . 7 class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
25 vx . . . . . . . 8 setvar 𝑥
2625cv 1347 . . . . . . 7 class 𝑥
27 cli 11228 . . . . . . 7 class
2824, 26, 27wbr 3987 . . . . . 6 wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥
299, 14, 28w3a 973 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
3029, 5, 17wrex 2449 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
31 c1 7762 . . . . . . . . 9 class 1
32 cfz 9952 . . . . . . . . 9 class ...
3331, 6, 32co 5850 . . . . . . . 8 class (1...𝑚)
34 vf . . . . . . . . 9 setvar 𝑓
3534cv 1347 . . . . . . . 8 class 𝑓
3633, 1, 35wf1o 5195 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
37 cn 8865 . . . . . . . . . . 11 class
38 cle 7942 . . . . . . . . . . . . 13 class
3918, 6, 38wbr 3987 . . . . . . . . . . . 12 wff 𝑛𝑚
4018, 35cfv 5196 . . . . . . . . . . . . 13 class (𝑓𝑛)
413, 40, 2csb 3049 . . . . . . . . . . . 12 class (𝑓𝑛) / 𝑘𝐵
4239, 41, 21cif 3525 . . . . . . . . . . 11 class if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)
4316, 37, 42cmpt 4048 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0))
4415, 43, 31cseq 10388 . . . . . . . . 9 class seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))
456, 44cfv 5196 . . . . . . . 8 class (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4626, 45wceq 1348 . . . . . . 7 wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)
4736, 46wa 103 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4847, 34wex 1485 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
4948, 5, 37wrex 2449 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))
5030, 49wo 703 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚)))
5150, 25cio 5156 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
524, 51wceq 1348 1 wff Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
Colors of variables: wff set class
This definition is referenced by:  sumeq1  11305  nfsum1  11306  nfsum  11307  sumeq2  11309  cbvsum  11310  zsumdc  11334  fsum3  11337
  Copyright terms: Public domain W3C validator