| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsum | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| cbvsum.2 |
|
| cbvsum.3 |
|
| cbvsum.4 |
|
| cbvsum.5 |
|
| Ref | Expression |
|---|---|
| cbvsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.4 |
. . . . . . . . . . 11
| |
| 2 | cbvsum.5 |
. . . . . . . . . . 11
| |
| 3 | cbvsum.1 |
. . . . . . . . . . 11
| |
| 4 | 1, 2, 3 | cbvcsb 3102 |
. . . . . . . . . 10
|
| 5 | ifeq1 3578 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | 6 | mpteq2i 4142 |
. . . . . . . 8
|
| 8 | seqeq3 10629 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 9 | breq1i 4061 |
. . . . . 6
|
| 11 | 10 | 3anbi3i 1195 |
. . . . 5
|
| 12 | 11 | rexbii 2514 |
. . . 4
|
| 13 | 1, 2, 3 | cbvcsb 3102 |
. . . . . . . . . . . 12
|
| 14 | ifeq1 3578 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . 11
|
| 16 | 15 | mpteq2i 4142 |
. . . . . . . . . 10
|
| 17 | seqeq3 10629 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
|
| 19 | 18 | fveq1i 5595 |
. . . . . . . 8
|
| 20 | 19 | eqeq2i 2217 |
. . . . . . 7
|
| 21 | 20 | anbi2i 457 |
. . . . . 6
|
| 22 | 21 | exbii 1629 |
. . . . 5
|
| 23 | 22 | rexbii 2514 |
. . . 4
|
| 24 | 12, 23 | orbi12i 766 |
. . 3
|
| 25 | 24 | iotabii 5269 |
. 2
|
| 26 | df-sumdc 11750 |
. 2
| |
| 27 | df-sumdc 11750 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-recs 6409 df-frec 6495 df-seqfrec 10625 df-sumdc 11750 |
| This theorem is referenced by: cbvsumv 11757 cbvsumi 11758 fsumsplitf 11804 |
| Copyright terms: Public domain | W3C validator |