ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsum Unicode version

Theorem cbvsum 11503
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
cbvsum.1  |-  ( j  =  k  ->  B  =  C )
cbvsum.2  |-  F/_ k A
cbvsum.3  |-  F/_ j A
cbvsum.4  |-  F/_ k B
cbvsum.5  |-  F/_ j C
Assertion
Ref Expression
cbvsum  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C

Proof of Theorem cbvsum
Dummy variables  f  m  n  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.4 . . . . . . . . . . 11  |-  F/_ k B
2 cbvsum.5 . . . . . . . . . . 11  |-  F/_ j C
3 cbvsum.1 . . . . . . . . . . 11  |-  ( j  =  k  ->  B  =  C )
41, 2, 3cbvcsb 3085 . . . . . . . . . 10  |-  [_ n  /  j ]_ B  =  [_ n  /  k ]_ C
5 ifeq1 3560 . . . . . . . . . 10  |-  ( [_ n  /  j ]_ B  =  [_ n  /  k ]_ C  ->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )
64, 5ax-mp 5 . . . . . . . . 9  |-  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )
76mpteq2i 4116 . . . . . . . 8  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )
8 seqeq3 10523 . . . . . . . 8  |-  ( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  ->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ) )
97, 8ax-mp 5 . . . . . . 7  |-  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )
109breq1i 4036 . . . . . 6  |-  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )
11103anbi3i 1194 . . . . 5  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
1211rexbii 2501 . . . 4  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
131, 2, 3cbvcsb 3085 . . . . . . . . . . . 12  |-  [_ (
f `  n )  /  j ]_ B  =  [_ ( f `  n )  /  k ]_ C
14 ifeq1 3560 . . . . . . . . . . . 12  |-  ( [_ ( f `  n
)  /  j ]_ B  =  [_ ( f `
 n )  / 
k ]_ C  ->  if ( n  <_  m , 
[_ ( f `  n )  /  j ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )
1513, 14ax-mp 5 . . . . . . . . . . 11  |-  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 )
1615mpteq2i 4116 . . . . . . . . . 10  |-  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )
17 seqeq3 10523 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )  ->  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) )
1816, 17ax-mp 5 . . . . . . . . 9  |-  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) )
1918fveq1i 5555 . . . . . . . 8  |-  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
)
2019eqeq2i 2204 . . . . . . 7  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
)  <->  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) )
2120anbi2i 457 . . . . . 6  |-  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) )
2221exbii 1616 . . . . 5  |-  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) )
2322rexbii 2501 . . . 4  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  0 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) )
2412, 23orbi12i 765 . . 3  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
2524iotabii 5238 . 2  |-  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  (
ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  (
ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
26 df-sumdc 11497 . 2  |-  sum_ j  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  j ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  0 ) ) ) `  m
) ) ) )
27 df-sumdc 11497 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
2825, 26, 273eqtr4i 2224 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   F/_wnfc 2323   A.wral 2472   E.wrex 2473   [_csb 3080    C_ wss 3153   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   iotacio 5213   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    + caddc 7875    <_ cle 8055   NNcn 8982   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518    ~~> cli 11421   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-seqfrec 10519  df-sumdc 11497
This theorem is referenced by:  cbvsumv  11504  cbvsumi  11505  fsumsplitf  11551
  Copyright terms: Public domain W3C validator