Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvsum | Unicode version |
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
cbvsum.1 | |
cbvsum.2 | |
cbvsum.3 | |
cbvsum.4 | |
cbvsum.5 |
Ref | Expression |
---|---|
cbvsum |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsum.4 | . . . . . . . . . . 11 | |
2 | cbvsum.5 | . . . . . . . . . . 11 | |
3 | cbvsum.1 | . . . . . . . . . . 11 | |
4 | 1, 2, 3 | cbvcsb 3036 | . . . . . . . . . 10 |
5 | ifeq1 3508 | . . . . . . . . . 10 | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 |
7 | 6 | mpteq2i 4051 | . . . . . . . 8 |
8 | seqeq3 10331 | . . . . . . . 8 | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 |
10 | 9 | breq1i 3972 | . . . . . 6 |
11 | 10 | 3anbi3i 1175 | . . . . 5 DECID DECID |
12 | 11 | rexbii 2464 | . . . 4 DECID DECID |
13 | 1, 2, 3 | cbvcsb 3036 | . . . . . . . . . . . 12 |
14 | ifeq1 3508 | . . . . . . . . . . . 12 | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . . . 11 |
16 | 15 | mpteq2i 4051 | . . . . . . . . . 10 |
17 | seqeq3 10331 | . . . . . . . . . 10 | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 |
19 | 18 | fveq1i 5466 | . . . . . . . 8 |
20 | 19 | eqeq2i 2168 | . . . . . . 7 |
21 | 20 | anbi2i 453 | . . . . . 6 |
22 | 21 | exbii 1585 | . . . . 5 |
23 | 22 | rexbii 2464 | . . . 4 |
24 | 12, 23 | orbi12i 754 | . . 3 DECID DECID |
25 | 24 | iotabii 5154 | . 2 DECID DECID |
26 | df-sumdc 11233 | . 2 DECID | |
27 | df-sumdc 11233 | . 2 DECID | |
28 | 25, 26, 27 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 DECID wdc 820 w3a 963 wceq 1335 wex 1472 wcel 2128 wnfc 2286 wral 2435 wrex 2436 csb 3031 wss 3102 cif 3505 class class class wbr 3965 cmpt 4025 cio 5130 wf1o 5166 cfv 5167 (class class class)co 5818 cc0 7715 c1 7716 caddc 7718 cle 7896 cn 8816 cz 9150 cuz 9422 cfz 9894 cseq 10326 cli 11157 csu 11232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-cnv 4591 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-recs 6246 df-frec 6332 df-seqfrec 10327 df-sumdc 11233 |
This theorem is referenced by: cbvsumv 11240 cbvsumi 11241 fsumsplitf 11287 |
Copyright terms: Public domain | W3C validator |