| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsum | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| cbvsum.2 |
|
| cbvsum.3 |
|
| cbvsum.4 |
|
| cbvsum.5 |
|
| Ref | Expression |
|---|---|
| cbvsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.4 |
. . . . . . . . . . 11
| |
| 2 | cbvsum.5 |
. . . . . . . . . . 11
| |
| 3 | cbvsum.1 |
. . . . . . . . . . 11
| |
| 4 | 1, 2, 3 | cbvcsb 3129 |
. . . . . . . . . 10
|
| 5 | ifeq1 3605 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | 6 | mpteq2i 4170 |
. . . . . . . 8
|
| 8 | seqeq3 10669 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 9 | breq1i 4089 |
. . . . . 6
|
| 11 | 10 | 3anbi3i 1216 |
. . . . 5
|
| 12 | 11 | rexbii 2537 |
. . . 4
|
| 13 | 1, 2, 3 | cbvcsb 3129 |
. . . . . . . . . . . 12
|
| 14 | ifeq1 3605 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . 11
|
| 16 | 15 | mpteq2i 4170 |
. . . . . . . . . 10
|
| 17 | seqeq3 10669 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
|
| 19 | 18 | fveq1i 5627 |
. . . . . . . 8
|
| 20 | 19 | eqeq2i 2240 |
. . . . . . 7
|
| 21 | 20 | anbi2i 457 |
. . . . . 6
|
| 22 | 21 | exbii 1651 |
. . . . 5
|
| 23 | 22 | rexbii 2537 |
. . . 4
|
| 24 | 12, 23 | orbi12i 769 |
. . 3
|
| 25 | 24 | iotabii 5301 |
. 2
|
| 26 | df-sumdc 11860 |
. 2
| |
| 27 | df-sumdc 11860 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 df-sumdc 11860 |
| This theorem is referenced by: cbvsumv 11867 cbvsumi 11868 fsumsplitf 11914 |
| Copyright terms: Public domain | W3C validator |