| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsum | Unicode version | ||
| Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| cbvsum.1 |
|
| cbvsum.2 |
|
| cbvsum.3 |
|
| cbvsum.4 |
|
| cbvsum.5 |
|
| Ref | Expression |
|---|---|
| cbvsum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsum.4 |
. . . . . . . . . . 11
| |
| 2 | cbvsum.5 |
. . . . . . . . . . 11
| |
| 3 | cbvsum.1 |
. . . . . . . . . . 11
| |
| 4 | 1, 2, 3 | cbvcsb 3089 |
. . . . . . . . . 10
|
| 5 | ifeq1 3565 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
|
| 7 | 6 | mpteq2i 4121 |
. . . . . . . 8
|
| 8 | seqeq3 10561 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 9 | breq1i 4041 |
. . . . . 6
|
| 11 | 10 | 3anbi3i 1194 |
. . . . 5
|
| 12 | 11 | rexbii 2504 |
. . . 4
|
| 13 | 1, 2, 3 | cbvcsb 3089 |
. . . . . . . . . . . 12
|
| 14 | ifeq1 3565 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . 11
|
| 16 | 15 | mpteq2i 4121 |
. . . . . . . . . 10
|
| 17 | seqeq3 10561 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
|
| 19 | 18 | fveq1i 5562 |
. . . . . . . 8
|
| 20 | 19 | eqeq2i 2207 |
. . . . . . 7
|
| 21 | 20 | anbi2i 457 |
. . . . . 6
|
| 22 | 21 | exbii 1619 |
. . . . 5
|
| 23 | 22 | rexbii 2504 |
. . . 4
|
| 24 | 12, 23 | orbi12i 765 |
. . 3
|
| 25 | 24 | iotabii 5243 |
. 2
|
| 26 | df-sumdc 11536 |
. 2
| |
| 27 | df-sumdc 11536 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 df-sumdc 11536 |
| This theorem is referenced by: cbvsumv 11543 cbvsumi 11544 fsumsplitf 11590 |
| Copyright terms: Public domain | W3C validator |