ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2 Unicode version

Theorem sumeq2 11541
Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
sumeq2  |-  ( A. k  e.  A  B  =  C  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2
Dummy variables  f  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  n  e.  A )
2 simp-4l 541 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  A. k  e.  A  B  =  C )
3 nfcsb1v 3117 . . . . . . . . . . . . . 14  |-  F/_ k [_ n  /  k ]_ B
4 nfcsb1v 3117 . . . . . . . . . . . . . 14  |-  F/_ k [_ n  /  k ]_ C
53, 4nfeq 2347 . . . . . . . . . . . . 13  |-  F/ k
[_ n  /  k ]_ B  =  [_ n  /  k ]_ C
6 csbeq1a 3093 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
7 csbeq1a 3093 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  C  =  [_ n  /  k ]_ C )
86, 7eqeq12d 2211 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( B  =  C  <->  [_ n  / 
k ]_ B  =  [_ n  /  k ]_ C
) )
95, 8rspc 2862 . . . . . . . . . . . 12  |-  ( n  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ n  /  k ]_ B  =  [_ n  / 
k ]_ C ) )
101, 2, 9sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  [_ n  / 
k ]_ B  =  [_ n  /  k ]_ C
)
11 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  m  e.  ZZ )
12 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  A  C_  ( ZZ>= `  m ) )
13 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )
14 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
1511, 12, 13, 14sumdc 11540 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  -> DECID  n  e.  A )
1610, 15ifeq1dadc 3592 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )
1716mpteq2dva 4124 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )
1817seqeq3d 10564 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ) )
1918breq1d 4044 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
2019pm5.32da 452 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
21 df-3an 982 . . . . . 6  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
22 df-3an 982 . . . . . 6  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <-> 
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
2320, 21, 223bitr4g 223 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
2423rexbidva 2494 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
25 f1of 5507 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
2625ad3antlr 493 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
27 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
28 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
29 simp-4r 542 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3029nnzd 9464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
31 fznn 10181 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
3230, 31syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
3327, 28, 32mpbir2and 946 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
3426, 33ffvelcdmd 5701 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
35 simp-4l 541 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
36 nfcsb1v 3117 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
37 nfcsb1v 3117 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
3836, 37nfeq 2347 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
39 csbeq1a 3093 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
40 csbeq1a 3093 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4139, 40eqeq12d 2211 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
4238, 41rspc 2862 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
4334, 35, 42sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
44 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
4544nnzd 9464 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
46 simpllr 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
4746nnzd 9464 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
48 zdcle 9419 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
4945, 47, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID  n  <_  m )
5043, 49ifeq1dadc 3592 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )
5150mpteq2dva 4124 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) )
5251seqeq3d 10564 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) )
5352fveq1d 5563 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) )
5453eqeq2d 2208 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)  <->  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) )
5554pm5.32da 452 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
5655exbidv 1839 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
5756rexbidva 2494 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
5824, 57orbi12d 794 . . 3  |-  ( A. k  e.  A  B  =  C  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) ) )
5958iotabidv 5242 . 2  |-  ( A. k  e.  A  B  =  C  ->  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) ) )
60 df-sumdc 11536 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
61 df-sumdc 11536 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  0 ) ) ) `  m
) ) ) )
6259, 60, 613eqtr4g 2254 1  |-  ( A. k  e.  A  B  =  C  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   [_csb 3084    C_ wss 3157   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   iotacio 5218   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    <_ cle 8079   NNcn 9007   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556    ~~> cli 11460   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-sumdc 11536
This theorem is referenced by:  sumeq2i  11546  sumeq2d  11549  fsum00  11644
  Copyright terms: Public domain W3C validator