ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq Unicode version

Theorem recvguniq 11306
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f  |-  ( ph  ->  F : NN --> RR )
recvguniq.lre  |-  ( ph  ->  L  e.  RR )
recvguniq.l  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) ) )
recvguniq.mre  |-  ( ph  ->  M  e.  RR )
recvguniq.m  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )
Assertion
Ref Expression
recvguniq  |-  ( ph  ->  L  =  M )
Distinct variable groups:    j, F, x   
j, L, k, x   
j, M, k, x    ph, k
Allowed substitution hints:    ph( x, j)    F( k)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5  |-  ( ph  ->  L  e.  RR )
2 recvguniq.mre . . . . 5  |-  ( ph  ->  M  e.  RR )
3 reaplt 8661 . . . . 5  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L #  M  <->  ( L  <  M  \/  M  < 
L ) ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  ( L #  M  <->  ( L  <  M  \/  M  < 
L ) ) )
5 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( L  +  x )  =  ( L  +  ( ( M  -  L )  /  2
) ) )
65breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  <  ( L  +  x )  <->  ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) ) ) )
7 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  +  x )  =  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) )
87breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( L  <  ( ( F `
 k )  +  x )  <->  L  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) )
96, 8anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) )  /\  L  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) )
10 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( M  +  x )  =  ( M  +  ( ( M  -  L )  /  2
) ) )
1110breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  <  ( M  +  x )  <->  ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) ) ) )
127breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( M  <  ( ( F `
 k )  +  x )  <->  M  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) )
1311, 12anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) )
149, 13anbi12d 473 . . . . . . . . 9  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( (
( F `  k
)  <  ( L  +  ( ( M  -  L )  / 
2 ) )  /\  L  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) )  /\  ( ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) ) )
1514rexbidv 2507 . . . . . . . 8  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )
16 recvguniq.l . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) ) )
17 recvguniq.m . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )
18 r19.26 2632 . . . . . . . . . . . 12  |-  ( A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) )  <->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
1916, 17, 18sylanbrc 417 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
20 nnuz 9684 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
2120rexanuz2 11302 . . . . . . . . . . . 12  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
2221ralbii 2512 . . . . . . . . . . 11  |-  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
2319, 22sylibr 134 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2420r19.2uz 11304 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  ->  E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2524ralimi 2569 . . . . . . . . . 10  |-  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2623, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  RR+  E. k  e.  NN  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  ( ( F `
 k )  < 
( M  +  x
)  /\  M  <  ( ( F `  k
)  +  x ) ) ) )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  L  <  M )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
28 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  M )  ->  L  <  M )
291adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  L  <  M )  ->  L  e.  RR )
302adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  L  <  M )  ->  M  e.  RR )
31 difrp 9814 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  <  M  <->  ( M  -  L )  e.  RR+ ) )
3229, 30, 31syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  M )  ->  ( L  <  M  <->  ( M  -  L )  e.  RR+ ) )
3328, 32mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  L  <  M )  ->  ( M  -  L )  e.  RR+ )
3433rphalfcld 9831 . . . . . . . 8  |-  ( (
ph  /\  L  <  M )  ->  ( ( M  -  L )  /  2 )  e.  RR+ )
3515, 27, 34rspcdva 2882 . . . . . . 7  |-  ( (
ph  /\  L  <  M )  ->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )
36 recvguniq.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3736ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  F : NN --> RR )
382ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  M  e.  RR )
391ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  L  e.  RR )
40 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  k  e.  NN )
41 simprrr 540 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )  ->  M  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) )
4241adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  M  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )
43 simprll 537 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )  ->  ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) ) )
4443adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  ( F `  k )  <  ( L  +  ( ( M  -  L
)  /  2 ) ) )
4537, 38, 39, 40, 42, 44recvguniqlem 11305 . . . . . . 7  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  -> F.  )
4635, 45rexlimddv 2628 . . . . . 6  |-  ( (
ph  /\  L  <  M )  -> F.  )
4746ex 115 . . . . 5  |-  ( ph  ->  ( L  <  M  -> F.  ) )
48 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( L  +  x )  =  ( L  +  ( ( L  -  M )  /  2
) ) )
4948breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  <  ( L  +  x )  <->  ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2 ) ) ) )
50 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  +  x )  =  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) )
5150breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( L  <  ( ( F `
 k )  +  x )  <->  L  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) )
5249, 51anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2 ) )  /\  L  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) )
53 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( M  +  x )  =  ( M  +  ( ( L  -  M )  /  2
) ) )
5453breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  <  ( M  +  x )  <->  ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) ) ) )
5550breq2d 4056 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( M  <  ( ( F `
 k )  +  x )  <->  M  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) )
5654, 55anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) )
5752, 56anbi12d 473 . . . . . . . . 9  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( (
( F `  k
)  <  ( L  +  ( ( L  -  M )  / 
2 ) )  /\  L  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) )  /\  ( ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) ) )
5857rexbidv 2507 . . . . . . . 8  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )
5926adantr 276 . . . . . . . 8  |-  ( (
ph  /\  M  <  L )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
60 difrp 9814 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( M  <  L  <->  ( L  -  M )  e.  RR+ ) )
612, 1, 60syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( M  <  L  <->  ( L  -  M )  e.  RR+ ) )
6261biimpa 296 . . . . . . . . 9  |-  ( (
ph  /\  M  <  L )  ->  ( L  -  M )  e.  RR+ )
6362rphalfcld 9831 . . . . . . . 8  |-  ( (
ph  /\  M  <  L )  ->  ( ( L  -  M )  /  2 )  e.  RR+ )
6458, 59, 63rspcdva 2882 . . . . . . 7  |-  ( (
ph  /\  M  <  L )  ->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )
6536ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  F : NN --> RR )
661ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  L  e.  RR )
672ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  M  e.  RR )
68 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  k  e.  NN )
69 simprlr 538 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )  ->  L  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) )
7069adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )
71 simprrl 539 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )  ->  ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) ) )
7271adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  ( F `  k )  <  ( M  +  ( ( L  -  M
)  /  2 ) ) )
7365, 66, 67, 68, 70, 72recvguniqlem 11305 . . . . . . 7  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  -> F.  )
7464, 73rexlimddv 2628 . . . . . 6  |-  ( (
ph  /\  M  <  L )  -> F.  )
7574ex 115 . . . . 5  |-  ( ph  ->  ( M  <  L  -> F.  ) )
7647, 75jaod 719 . . . 4  |-  ( ph  ->  ( ( L  < 
M  \/  M  < 
L )  -> F.  ) )
774, 76sylbid 150 . . 3  |-  ( ph  ->  ( L #  M  -> F.  ) )
78 dfnot 1391 . . 3  |-  ( -.  L #  M  <->  ( L #  M  -> F.  ) )
7977, 78sylibr 134 . 2  |-  ( ph  ->  -.  L #  M )
801recnd 8101 . . 3  |-  ( ph  ->  L  e.  CC )
812recnd 8101 . . 3  |-  ( ph  ->  M  e.  CC )
82 apti 8695 . . 3  |-  ( ( L  e.  CC  /\  M  e.  CC )  ->  ( L  =  M  <->  -.  L #  M )
)
8380, 81, 82syl2anc 411 . 2  |-  ( ph  ->  ( L  =  M  <->  -.  L #  M )
)
8479, 83mpbird 167 1  |-  ( ph  ->  L  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   F. wfal 1378    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   1c1 7926    + caddc 7928    < clt 8107    - cmin 8243   # cap 8654    / cdiv 8745   NNcn 9036   2c2 9087   ZZ>=cuz 9648   RR+crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776
This theorem is referenced by:  resqrexlemsqa  11335
  Copyright terms: Public domain W3C validator