Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > indifdir | Unicode version |
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
Ref | Expression |
---|---|
indifdir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . . . 4 | |
2 | elin 3310 | . . . . 5 | |
3 | 2 | notbii 663 | . . . 4 |
4 | 1, 3 | anbi12i 457 | . . 3 |
5 | eldif 3130 | . . 3 | |
6 | elin 3310 | . . . . 5 | |
7 | eldif 3130 | . . . . . 6 | |
8 | 7 | anbi1i 455 | . . . . 5 |
9 | 6, 8 | bitri 183 | . . . 4 |
10 | an32 557 | . . . . 5 | |
11 | simpl 108 | . . . . . . . 8 | |
12 | 11 | con3i 627 | . . . . . . 7 |
13 | 12 | anim2i 340 | . . . . . 6 |
14 | simpl 108 | . . . . . . 7 | |
15 | ax-in2 610 | . . . . . . . . . . 11 | |
16 | 15 | expcomd 1434 | . . . . . . . . . 10 |
17 | 16 | impcom 124 | . . . . . . . . 9 |
18 | dfnot 1366 | . . . . . . . . 9 | |
19 | 17, 18 | sylibr 133 | . . . . . . . 8 |
20 | 19 | adantll 473 | . . . . . . 7 |
21 | 14, 20 | jca 304 | . . . . . 6 |
22 | 13, 21 | impbii 125 | . . . . 5 |
23 | 10, 22 | bitri 183 | . . . 4 |
24 | 9, 23 | bitri 183 | . . 3 |
25 | 4, 5, 24 | 3bitr4ri 212 | . 2 |
26 | 25 | eqriv 2167 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wfal 1353 wcel 2141 cdif 3118 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |