| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > indifdir | Unicode version | ||
| Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
| Ref | Expression |
|---|---|
| indifdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3346 |
. . . 4
| |
| 2 | elin 3346 |
. . . . 5
| |
| 3 | 2 | notbii 669 |
. . . 4
|
| 4 | 1, 3 | anbi12i 460 |
. . 3
|
| 5 | eldif 3166 |
. . 3
| |
| 6 | elin 3346 |
. . . . 5
| |
| 7 | eldif 3166 |
. . . . . 6
| |
| 8 | 7 | anbi1i 458 |
. . . . 5
|
| 9 | 6, 8 | bitri 184 |
. . . 4
|
| 10 | an32 562 |
. . . . 5
| |
| 11 | simpl 109 |
. . . . . . . 8
| |
| 12 | 11 | con3i 633 |
. . . . . . 7
|
| 13 | 12 | anim2i 342 |
. . . . . 6
|
| 14 | simpl 109 |
. . . . . . 7
| |
| 15 | ax-in2 616 |
. . . . . . . . . . 11
| |
| 16 | 15 | expcomd 1452 |
. . . . . . . . . 10
|
| 17 | 16 | impcom 125 |
. . . . . . . . 9
|
| 18 | dfnot 1382 |
. . . . . . . . 9
| |
| 19 | 17, 18 | sylibr 134 |
. . . . . . . 8
|
| 20 | 19 | adantll 476 |
. . . . . . 7
|
| 21 | 14, 20 | jca 306 |
. . . . . 6
|
| 22 | 13, 21 | impbii 126 |
. . . . 5
|
| 23 | 10, 22 | bitri 184 |
. . . 4
|
| 24 | 9, 23 | bitri 184 |
. . 3
|
| 25 | 4, 5, 24 | 3bitr4ri 213 |
. 2
|
| 26 | 25 | eqriv 2193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |