ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1367
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 114 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1366 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 133 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   F. wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  genpdisj  7474  cauappcvgprlemdisj  7602  caucvgprlemdisj  7625  caucvgprprlemdisj  7653  suplocexprlemdisj  7671  suplocexprlemub  7674  suplocsrlem  7759  resqrexlemgt0  10973  resqrexlemoverl  10974  leabs  11027  climge0  11277  isprm5lem  12084  ennnfonelemex  12358  dedekindeu  13356  dedekindicclemicc  13365  pw1nct  13998
  Copyright terms: Public domain W3C validator