Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inegd | Unicode version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 |
Ref | Expression |
---|---|
inegd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | dfnot 1366 | . 2 | |
4 | 2, 3 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: genpdisj 7474 cauappcvgprlemdisj 7602 caucvgprlemdisj 7625 caucvgprprlemdisj 7653 suplocexprlemdisj 7671 suplocexprlemub 7674 suplocsrlem 7759 resqrexlemgt0 10973 resqrexlemoverl 10974 leabs 11027 climge0 11277 isprm5lem 12084 ennnfonelemex 12358 dedekindeu 13356 dedekindicclemicc 13365 pw1nct 13998 |
Copyright terms: Public domain | W3C validator |