ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1383
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 115 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1382 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 134 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F. wfal 1369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by:  genpdisj  7590  cauappcvgprlemdisj  7718  caucvgprlemdisj  7741  caucvgprprlemdisj  7769  suplocexprlemdisj  7787  suplocexprlemub  7790  suplocsrlem  7875  resqrexlemgt0  11185  resqrexlemoverl  11186  leabs  11239  climge0  11490  isprm5lem  12309  ennnfonelemex  12631  dedekindeu  14859  dedekindicclemicc  14868  pw1nct  15647
  Copyright terms: Public domain W3C validator