| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inegd | Unicode version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| inegd.1 |
|
| Ref | Expression |
|---|---|
| inegd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inegd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | dfnot 1391 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: genpdisj 7638 cauappcvgprlemdisj 7766 caucvgprlemdisj 7789 caucvgprprlemdisj 7817 suplocexprlemdisj 7835 suplocexprlemub 7838 suplocsrlem 7923 resqrexlemgt0 11364 resqrexlemoverl 11365 leabs 11418 climge0 11669 isprm5lem 12496 ennnfonelemex 12818 dedekindeu 15128 dedekindicclemicc 15137 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |