| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inegd | Unicode version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| inegd.1 |
|
| Ref | Expression |
|---|---|
| inegd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inegd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | dfnot 1382 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: genpdisj 7590 cauappcvgprlemdisj 7718 caucvgprlemdisj 7741 caucvgprprlemdisj 7769 suplocexprlemdisj 7787 suplocexprlemub 7790 suplocsrlem 7875 resqrexlemgt0 11185 resqrexlemoverl 11186 leabs 11239 climge0 11490 isprm5lem 12309 ennnfonelemex 12631 dedekindeu 14859 dedekindicclemicc 14868 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |