ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1383
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 115 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1382 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 134 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F. wfal 1369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by:  genpdisj  7607  cauappcvgprlemdisj  7735  caucvgprlemdisj  7758  caucvgprprlemdisj  7786  suplocexprlemdisj  7804  suplocexprlemub  7807  suplocsrlem  7892  resqrexlemgt0  11202  resqrexlemoverl  11203  leabs  11256  climge0  11507  isprm5lem  12334  ennnfonelemex  12656  dedekindeu  14943  dedekindicclemicc  14952  pw1nct  15734
  Copyright terms: Public domain W3C validator