ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1382
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 115 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1381 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 134 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F. wfal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369
This theorem is referenced by:  genpdisj  7536  cauappcvgprlemdisj  7664  caucvgprlemdisj  7687  caucvgprprlemdisj  7715  suplocexprlemdisj  7733  suplocexprlemub  7736  suplocsrlem  7821  resqrexlemgt0  11043  resqrexlemoverl  11044  leabs  11097  climge0  11347  isprm5lem  12155  ennnfonelemex  12429  dedekindeu  14397  dedekindicclemicc  14406  pw1nct  15049
  Copyright terms: Public domain W3C validator