![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inegd | Unicode version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
inegd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dfnot 1381 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 |
This theorem is referenced by: genpdisj 7536 cauappcvgprlemdisj 7664 caucvgprlemdisj 7687 caucvgprprlemdisj 7715 suplocexprlemdisj 7733 suplocexprlemub 7736 suplocsrlem 7821 resqrexlemgt0 11043 resqrexlemoverl 11044 leabs 11097 climge0 11347 isprm5lem 12155 ennnfonelemex 12429 dedekindeu 14397 dedekindicclemicc 14406 pw1nct 15049 |
Copyright terms: Public domain | W3C validator |