ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inegd Unicode version

Theorem inegd 1392
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 115 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1391 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 134 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F. wfal 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379
This theorem is referenced by:  genpdisj  7638  cauappcvgprlemdisj  7766  caucvgprlemdisj  7789  caucvgprprlemdisj  7817  suplocexprlemdisj  7835  suplocexprlemub  7838  suplocsrlem  7923  resqrexlemgt0  11364  resqrexlemoverl  11365  leabs  11418  climge0  11669  isprm5lem  12496  ennnfonelemex  12818  dedekindeu  15128  dedekindicclemicc  15137  pw1nct  15977
  Copyright terms: Public domain W3C validator