Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty2 Unicode version

Theorem bj-axempty2 13929
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 13928. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty2  |-  E. x A. y  -.  y  e.  x
Distinct variable group:    x, y

Proof of Theorem bj-axempty2
StepHypRef Expression
1 bj-axemptylem 13927 . 2  |-  E. x A. y ( y  e.  x  -> F.  )
2 dfnot 1366 . . . 4  |-  ( -.  y  e.  x  <->  ( y  e.  x  -> F.  )
)
32albii 1463 . . 3  |-  ( A. y  -.  y  e.  x  <->  A. y ( y  e.  x  -> F.  )
)
43exbii 1598 . 2  |-  ( E. x A. y  -.  y  e.  x  <->  E. x A. y ( y  e.  x  -> F.  )
)
51, 4mpbir 145 1  |-  E. x A. y  -.  y  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1346   F. wfal 1353   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdeq 13855  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator