Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty2 Unicode version

Theorem bj-axempty2 15540
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 15539. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4159 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty2  |-  E. x A. y  -.  y  e.  x
Distinct variable group:    x, y

Proof of Theorem bj-axempty2
StepHypRef Expression
1 bj-axemptylem 15538 . 2  |-  E. x A. y ( y  e.  x  -> F.  )
2 dfnot 1382 . . . 4  |-  ( -.  y  e.  x  <->  ( y  e.  x  -> F.  )
)
32albii 1484 . . 3  |-  ( A. y  -.  y  e.  x  <->  A. y ( y  e.  x  -> F.  )
)
43exbii 1619 . 2  |-  ( E. x A. y  -.  y  e.  x  <->  E. x A. y ( y  e.  x  -> F.  )
)
51, 4mpbir 146 1  |-  E. x A. y  -.  y  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362   F. wfal 1369   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548  ax-bd0 15459  ax-bdim 15460  ax-bdn 15463  ax-bdeq 15466  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator