Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pclem6 | Unicode version |
Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.) |
Ref | Expression |
---|---|
pclem6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 117 | . . . . 5 | |
2 | pm3.4 331 | . . . . . 6 | |
3 | 2 | com12 30 | . . . . 5 |
4 | 1, 3 | syl9r 73 | . . . 4 |
5 | ax-ia3 107 | . . . . 5 | |
6 | biimpr 129 | . . . . 5 | |
7 | 5, 6 | syl9 72 | . . . 4 |
8 | 4, 7 | impbidd 126 | . . 3 |
9 | pm5.19 701 | . . . 4 | |
10 | 9 | pm2.21i 641 | . . 3 |
11 | 8, 10 | syl6com 35 | . 2 |
12 | dfnot 1366 | . 2 | |
13 | 11, 12 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: nalset 4119 pwnss 4145 bj-nalset 13930 |
Copyright terms: Public domain | W3C validator |