| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pclem6 | Unicode version | ||
| Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.) | 
| Ref | Expression | 
|---|---|
| pclem6 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 118 | 
. . . . 5
 | |
| 2 | pm3.4 333 | 
. . . . . 6
 | |
| 3 | 2 | com12 30 | 
. . . . 5
 | 
| 4 | 1, 3 | syl9r 73 | 
. . . 4
 | 
| 5 | ax-ia3 108 | 
. . . . 5
 | |
| 6 | biimpr 130 | 
. . . . 5
 | |
| 7 | 5, 6 | syl9 72 | 
. . . 4
 | 
| 8 | 4, 7 | impbidd 127 | 
. . 3
 | 
| 9 | pm5.19 707 | 
. . . 4
 | |
| 10 | 9 | pm2.21i 647 | 
. . 3
 | 
| 11 | 8, 10 | syl6com 35 | 
. 2
 | 
| 12 | dfnot 1382 | 
. 2
 | |
| 13 | 11, 12 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: nalset 4163 pwnss 4192 bj-nalset 15541 | 
| Copyright terms: Public domain | W3C validator |