| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pclem6 | Unicode version | ||
| Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.) |
| Ref | Expression |
|---|---|
| pclem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 118 |
. . . . 5
| |
| 2 | pm3.4 333 |
. . . . . 6
| |
| 3 | 2 | com12 30 |
. . . . 5
|
| 4 | 1, 3 | syl9r 73 |
. . . 4
|
| 5 | ax-ia3 108 |
. . . . 5
| |
| 6 | biimpr 130 |
. . . . 5
| |
| 7 | 5, 6 | syl9 72 |
. . . 4
|
| 8 | 4, 7 | impbidd 127 |
. . 3
|
| 9 | pm5.19 707 |
. . . 4
| |
| 10 | 9 | pm2.21i 647 |
. . 3
|
| 11 | 8, 10 | syl6com 35 |
. 2
|
| 12 | dfnot 1382 |
. 2
| |
| 13 | 11, 12 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: nalset 4164 pwnss 4193 bj-nalset 15625 |
| Copyright terms: Public domain | W3C validator |