Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf0 Unicode version

Theorem elabgf0 11677
Description: Lemma for elabgf 2758. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
elabgf0  |-  ( x  =  A  ->  ( A  e.  { x  |  ph }  <->  ph ) )

Proof of Theorem elabgf0
StepHypRef Expression
1 abid 2076 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 eleq1 2150 . 2  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
31, 2syl5rbbr 193 1  |-  ( x  =  A  ->  ( A  e.  { x  |  ph }  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   {cab 2074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084
This theorem is referenced by:  elabgft1  11678  elabgf2  11680
  Copyright terms: Public domain W3C validator