Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf0 Unicode version

Theorem elabgf0 13771
Description: Lemma for elabgf 2872. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
elabgf0  |-  ( x  =  A  ->  ( A  e.  { x  |  ph }  <->  ph ) )

Proof of Theorem elabgf0
StepHypRef Expression
1 eleq1 2233 . 2  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
2 abid 2158 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
31, 2bitr3di 194 1  |-  ( x  =  A  ->  ( A  e.  { x  |  ph }  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by:  elabgft1  13772  elabgf2  13774
  Copyright terms: Public domain W3C validator