| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > elabgf0 | GIF version | ||
| Description: Lemma for elabgf 2945. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| elabgf0 | ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | abid 2217 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 3 | 1, 2 | bitr3di 195 | 1 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: elabgft1 16072 elabgf2 16074 |
| Copyright terms: Public domain | W3C validator |