Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf0 GIF version

Theorem elabgf0 13658
Description: Lemma for elabgf 2868. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
elabgf0 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))

Proof of Theorem elabgf0
StepHypRef Expression
1 eleq1 2229 . 2 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
2 abid 2153 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
31, 2bitr3di 194 1 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161
This theorem is referenced by:  elabgft1  13659  elabgf2  13661
  Copyright terms: Public domain W3C validator