Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf0 GIF version

Theorem elabgf0 15390
Description: Lemma for elabgf 2906. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
elabgf0 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))

Proof of Theorem elabgf0
StepHypRef Expression
1 eleq1 2259 . 2 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
2 abid 2184 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
31, 2bitr3di 195 1 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  elabgft1  15391  elabgf2  15393
  Copyright terms: Public domain W3C validator